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Abstract

This paper studies the effects of head starts in innovation contests. We ana-

lyze a two-firm winner-takes-all contest in which each firm decides when to stop

a privately observed search for innovations (with recall). The firm with a supe-

rior innovation at the outset has a head start. The firm with the most successful

innovation at a common deadline wins. We find that a large head start guaran-

tees a firm victory without incurring cost. However, a medium-sized head start

ensures defeat for the firm if the deadline is sufficiently long. In the latter case,

the competitor wins the entire rent of the contest. The head start firm may still

increase its expected payoff by discarding its initial innovation in order to indicate

a commitment to search. The effects of early stage information disclosure and cost

advantages are studied, respectively.
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Introduction

“[U]nfortunately, for every Apple out there, there are a thousand other com-

panies . . . like Woolworth, Montgomery Ward, Borders Books, Blockbuster

Video, American Motors and Pan Am Airlines, that once ‘ruled the roost’

of their respective industries, to only get knocked off by more innovative

competitors and come crashing down.” (Forbes, January 8, 2014)

This paper studies innovation contests, which are widely observed in a variety of

industries.1 In many innovation contests, some firms have head starts: one firm has a

more advanced existing technology than its rivals at the outset of a competition. The

opening excerpt addresses a prominent phenomenon that is often observed in innovation

contests: companies with a head start ultimately lose a competition in the long run.

It seems that having a head start sometimes results in being trapped. The failure of

Nokia, the former global mobile communications giant, to compete with the rise of

Apple’s iPhone is one example. James Surowiecki (2013) pointed out that Nokia’s focus

on (improving) hardware, its existing technology, and neglect of (innovating) software

contributed to the company’s downfall. In his point of view, this was “a classic case

of a company being enthralled (and, in a way, imprisoned) by its past success” (New

Yorker Times, September 3, 2013).

Motivated by these observations, we investigate the effects of head starts on firms’

competition strategies and payoffs in innovation contests. Previous work on innovation

contests focuses on reduced form games and symmetric players, and previous work on

contests with head starts considers all-pay auctions with either sequential bidding or

simultaneous bidding. By contrast, we consider a stochastic contest model in which one

firm has a superior existing innovation at the outset of the contest and firms’ decisions

are dynamic. The main contribution of our paper is the identification of the long-run

effects of a head start. In particular, in a certain range of the head start value, the head

start firm becomes the ultimate loser in the long run and its competitor (or competitors)

benefits greatly from its initial apparent “disadvantage”. The key insight to the above

phenomenon is that a large head start (e.g., a patent) indicates a firm’s demise as an

innovator.

Specifically, the model we develop in Section 1 entails two firms and one fixed prize.

At the beginning of the game, each firm may or may not have an initial innovation.

1For instance, prior to World War II, the U.S. Army Air Corps regularly sponsored prototype
tournaments to award a production contract to the winning manufacturers; the Federal Communication
Commission held a tournament to determine the American broadcast standard for high-definition
television; IBM sponsors annual tournaments in which the winning contestants receive grants to develop
their projects for commercial use; in professional sports, clubs or franchises search for competent free
agents before new seasons start. See Taylor (1995), Halac et al. (2015), or the website of InnoCentive
for more examples.
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Whether a firm has an initial innovation, as well as the value of the initial innovation if

this firm has one, is common knowledge. If a firm conducts a search for innovations, it

incurs a search cost. As long as a firm continues searching, innovations arrive according

to a Poisson process. The value of each innovation is drawn independently from a

fixed distribution. The search activity and innovation process of each firm are privately

observed. At any time point before a common deadline, each firm decides whether to

stop its search process. At the deadline, each firm releases its most effective innovation

to the public, and the one whose released innovation is deemed superior wins the prize.

First, we consider equilibrium behavior in the benchmark case, in which no firm

has any innovation initially, in Section 2. We divide the deadline-cost space into three

regions (as in figure 1). For a given deadline, (1) if the search cost is relatively high, there

are two equilibria, in each of which one firm searches until it discovers an innovation

and the other firm does not search; (2) if the search cost is in the middle range, each

firm searches until it discovers an innovation; (3) if the search cost is relatively low,

each firm searches until it discovers an innovation with a value above a certain positive

cut-off value. In the third case, the equilibrium cut-off value strictly increases as the

deadline extends and the arrival rate of innovations increases, and it strictly decreases

as the search cost increases.

We then extend the benchmark case to include a head start: the head start firm is

assigned a better initial innovation than its competitor, called the latecomer. Section 3

considers equilibrium behavior in the case with a head start and compares equilibrium

payoffs across firms, and Section 4 analyzes the effects of a head start on each firm’s

equilibrium payoff.

Firms’ equilibrium strategies depend on the value of the head starter’s initial inno-

vation (head start). Our main findings concern the case in which the head start lies in

the middle range. In this range, the head starter loses its incentive to search because

of its high initial position. The latecomer takes advantage of that and searches more

actively, compared to when there is no head start.

An immediate question is: who does the head start favor? When the deadline is

short, the latecomer does not have enough time to catch up, and thus the head starter

obtains a higher expected payoff than the latecomer does. When the deadline is long,

the latecomer is highly likely to obtain a superior innovation than the head starter, and

thus the latecomer obtains a higher expected payoff. In the latter case, the latecomer’s

initial apparent “disadvantage”, in fact, puts it in a more favorable position than the

head starter. When the deadline is sufficiently long, the head starter is doomed to lose

the competition with a payoff of zero because of its unwillingness to search, and all

benefits of the head start goes to the latecomer.

Then, does the result that the latecomer is in a more favorable position than the
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head starter when the deadline is long imply that the head start hurts the head starter

and benefits the latecomer in the long run? Focus on the case in which the latecomer

does not have an initial innovation. When the search cost is relatively low, the head

start, in fact, always benefits the head starter, but the benefit ceases as the deadline

extends. It also benefits the latecomer when the deadline is long. When the search cost

is relatively high, the head start could potentially hurt the head starter.

If the head start is large, neither firm will conduct a search, because the latecomer

is deterred from competition. In this scenario, no innovation or technological progress

is created, and the head starter wins the contest directly. If the head start is small,

both firms play the same equilibrium strategy as they do when neither firm has an

initial innovation. In both cases, the head start benefits the head starter and hurts the

latecomer.

Section 5.1 extends our model to include stages at which the firms sequentially have

an option to discard their initial innovation before the contest starts. Suppose that

both firms’ initial innovations are of values in the middle range and that the deadline is

long. If the head starter can take the first move in the game, it can increase its expected

payoff by discarding its initial innovation and committing to search. When search cost

is low, by sacrificing the initial innovation, the original head starter actually makes the

competitor the new head starter; this new head starter has no incentive to discard its

initial innovation or to search any more. It is possible that by discarding the head start,

the original head starter may benefit both firms. When search cost is high, discarding

the initial innovation is a credible threat to the latecomer, who will find the apparent

leveling of the playing field discouraging to conducting a high-cost search. As a result,

the head starter suppresses the innovation progress.

In markets, some firms indeed give up head starts (Ulhøi, 2004), and our result

provides a partial explanation of this phenomenon. For example, Tesla gave up its

patents for its advanced technologies on electric vehicles at an early stage of its business.2

While there may be many reasons for doing so, one significant reason is to maintain

Tesla’s position as a leading innovator in the electronic vehicle market.3 As Elon Musk

(2014), the CEO of Tesla, wrote,

technology leadership is not defined by patents, which history has repeatedly

shown to be small protection indeed against a determined competitor, but

rather by the ability of a company to attract and motivate the world’s most

talented engineers.4

2Toyota also gave up patents for its hydrogen fuel cell vehicles at an early stage.
3Another reason is to help the market grow faster by the diffusion of its technologies. A larger

market increases demand and lowers cost.
4See “All Our Patent Are Belong To You,” June 12, 2014, on

http://www.teslamotors.com/blog/all-our-patent-are-belong-you.
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Whilst Tesla keeps innovating to win a large share of the future market, its smaller com-

petitors have less incentive to innovate since they can directly adopt Tesla’s technologies.

One conjecture which coincides with our result is that “Tesla might be planning to dis-

tinguish itself from the competitors it helps . . . by inventing and patenting better

electric cars than are available today” (Discovery Newsletter, June 13, 2014).

Section 5.2 considers intermediate information disclosure. Suppose the firms are

required to reveal their discoveries at an early time point after the starting of the

contest, how would firms compete against each other? If the head start is in the middle

range, before the revelation point, the head starter will conduct a search, whereas the

latecomer will not. If the head starter obtains a very good innovation before that

point, the latecomer will be deterred from competition. Otherwise, the head starter is

still almost certain to lose the competition. Hence, such an information revelation at an

early time point increases both the expected payoff to the head starter and the expected

value of the winning innovation.

Section 6 compares the effects of a head start to those of a cost advantage and points

out a significant difference. A cost advantage reliably encourages a firm to search more

actively for innovations, whereas it discourages the firm’s competitor.

Section 7 concludes the paper. The overarching message our paper conveys is that

a market regulator who cares about long-run competitions in markets may not need to

worry too much about the power of the current market dominating firms if these firms

are not in excessively high positions. In the long run, these firms are to be defeated by

latecomers. On the other hand, if the dominating firms are in excessively high positions,

which deters entry, a regulator can intervene the market.

Literature

There is a large literature on innovation contests. Most work considers reduced form

models (Fullerton and McAfee, 1999; Moldovanu and Sela, 2001; Baye and Hoppe, 2003;

Che and Gale, 2003).5 Head starts are studied in various forms of all-pay auctions.

Leininger (1991), Konrad (2002), and Konrad and Leininger (2007) model a head start

as a first-mover advantage in a sequential all-pay auction and study the first-mover’s

performance. Casas-Arce and Martinez-Jerez (2011), Siegel (2014b), and Seel (2014)

model a head start as a handicap in a simultaneous all-pay auction and study the

effect on the head starter. Kirkegard (2012) and Seel and Wasser (2014) also model a

head start as a handicap in a simultaneous all-pay auction but study the effect on the

auctioneer’s expected revenue. Segev and Sela (2014) analyzes the effect a handicap

5Also see, for example, Hillman and Reiley (1989), Baye et al. (1996), Krishna and Morgan (1998),
Che and Gale (1998), Cohen and Sela (2007), Schöttner (2008), Bos (2012), Siegel (2009, 2010, 2014a),
Kaplan et al. (2003), and Erkal and Xiao (2015).
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on the first mover in a sequential all-pay auction. Unlike these papers, we consider a

framework in which players’ decisions are dynamic.

The literature considering settings with dynamic decisions is scarce, and most studies

focus on symmetric players. The study by Taylor (1995) is the most prominent.6 In

his symmetric T -period private search model, there is a unique equilibrium in which

players continue searching for innovations until they discover one with a value above a

certain cut-off. We extend Taylor’s model to analyze the effects of a head start and find

the long-run effects of the head start, which is our main contribution.

Seel and Strack (2013, 2015) and Lang et al. (2014) also consider models with

dynamic decisions. Same as in our model, in these models each player also solves an

optimal stopping problem. However, the objectives and the results of these papers are

different from ours. In Seel and Strack (2013 2015), each player decides when to stop a

privately observed Brownian motion with a drift. In Seel and Strack (2013), there is no

deadline and no search cost and a process is forced to stop when it hits zero. They find

that players do not stop their processes immediately even if the drift is negative. In Seel

and Strack (2015), each search incurs a cost that depends on the stopping time. This

more recent study finds that when noise vanishes the equilibrium outcome converges to

the symmetric equilibrium outcome of an all-pay auction. Lang et al (2014) consider

a multi-period model in which each player decides when to stop a privately observed

stochastic points-accumulation process. They find that in equilibrium the distribution

over successes converges to the symmetric equilibrium distribution of an all-pay auction

when the deadline is long.

Our paper also contributes to the literature on information disclosure in innovation

contests. Aoyagi (2010), Ederer (2010), Goltsman and Mukherjee (2011), Wirtz (2013)

study how much information on intermediate performances a contest designer should

disclose to the contestants. Unlike our model, these papers consider two-stage games

in which the value of a contestant’s innovation is its total outputs from the two stages.

Halac et al. (2015) and Bimpikis et al. (2014) study the problem of designing innova-

tion contests, which includes both the award structures and the information disclosure

policies. Halac et al. (2015) consider a model in which each contestant searches for

innovations, but search outcomes are binary. A contest ends after the occurrence of a

single breakthrough, and a contestant becomes more and more pessimistic over time

if there has been no breakthrough. Bimpikis et al. (2014) consider a model which

shares some features with Halac et al.’s (2015). In the model, an innovation happens

only if two breakthroughs are achieved by the contestants, the designer decides whether

to disclose the information on whether the first breakthrough has been achieved by a

contestant, and intermediate awards can be used. In both models, contestants are sym-

6Innovation contests were modeled as a race in which the first to reach a defined finishing line gains
a prize, e.g., Loury (1979), Lee and Wilde (1980), and Reinganum (1981, 1982).
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metric. In contrast, the contestants in our model are always asymmetric. Rieck (2010)

studies information disclosure in a two-period model of Taylor (1995). In contrast to

our finding, he shows that the contest designer prefers concealing the outcome in the

first stage. Unlike all the above papers, Gill (2008), Yildirim (2005), and Akcigit and

Liu (2014) address the incentives for contestants, rather than the designer, to disclose

intermediate outcomes.

Last but most importantly, this paper contributes to the literature on the relation-

ship between market structure and incentive for R&D investment. The debate over the

effect of market structure on R&D investment dates back to Schumpeter (1934, 1942).7

Due to the complexity of the R&D process, earlier theoretical studies tend to focus on

one facet of the process. Gilbert and Newbery (1982), Fudenberg et al.(1983), Har-

ris and Vickers (1985a, 1985b, 1987), Judd (2003), Grossman and Shapiro (1987), and

Lippman and McCardle (1987) study preemption games. In these models, an incum-

bent monopolist has more incentive to invest in R&D than a potential entrant. In fact,

a potential entrant sees little chance to win the competition, because of a lag at the

starting point of the competition, and is deterred from competition. In our model, the

intuition for the result in the case of a large head start is similar to this “preemption

effect”, except that no firm invests in our case.

By contrast, Arrow (1962) and Reinganum (1983, 1985) show, in their respective

models, that an incumbent monopolist has less incentive to innovate than a new en-

trant.8 The cause for this is what is called the “replacement effect” by Tirole (1997).

While an incumbent monopolist can increase its profit by innovating, it has to lose

the profit from the old technology once it adopts a new technology. This effectively

reduces the net value of the new technology to the incumbent. It is then natural that

a firm who has a lower value of an innovation has less incentive to innovate, which is

exactly what happens in our model with asymmetric costs. On the other hand, our

main result, on medium-sized head start, has an intuition very similar to the “replace-

ment effect”. Rather than a reduction in the value of an innovation to the head starter,

a head start decreases the increase in the probability of winning from innovating. In

both Reinganum’s models and our model, an incumbent could have a lower probability

of winning than a new entrant. However, different from her models, in our model an

incumbent (head starter) can also have a lower expected payoff than a new entrant

(latecomer).

7See Gilbert (2006) for a comprehensive survey.
8Doraszelski (2003) generalizes the models of Reinganum (1981, 1982) to a history-dependent inno-

vation process model and shows, in some circumstances, the catching-up behavior in equilibrium.
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1 Model

Firms and Tasks

There are two risk neutral firms, Firm 1 and Firm 2, competing for a prespecified

prize, normalized to 1, in the contest. Time is continuous, and each firm searches for

innovations before a deadline T . At the deadline T , each firm releases to the public the

best innovation it has discovered, and the firm who releases a superior innovation wins

the prize. If no firm has discovered any innovation, the prize is retained. If there is a tie

between the two firms, the prize is randomly allocated to them with equal probability.

At any time point t ∈ [0, T ) before the deadline, each firm decides whether to con-

tinue searching for innovations. If a firm continues searching, the arrival of innovations

in this firm follows a Poisson process with an arrival rate of λ. That is, the proba-

bility of discovering m innovations in an interval of length δ is e−λδ(λδ)m

m!
. The values

of innovations are drawn independently from a distribution F , defined on (0, 1] with

F (0) := lima→0 F (a) = 0. F is continuous and strictly increasing over the domain.

Each firm’s search cost is c > 0 per unit of time. We assume that c < λ, because if

c > λ the cost is so high that no firm is going to conduct a search. To illustrate this

claim, suppose Firm 2 does not search, Firm 1 will not continue searching if it has an

innovation with a value above 0, whereas Firm 1’s instantaneous gain from searching at

any moment when it has no innovation is

lim
δ→0

∑+∞
m=1

e−λδ(λδ)m

m!
− cδ

δ
= λ− c,

which is negative if c > λ.

Information

The search processes of the two firms are independent and with recall. Whether the

opponent firm is actively searching is unobservable; whether a firm has discovered any

innovation, as well as the values of discovered innovations, is private information until

the deadline T .

For convenience, we say a firm is in a state a ∈ [0, 1] at time t if the value of the

best innovation it has discovered by time t is a, where a = 0 means that the firm has

no innovation. The initial states of Firm 1 and Firm 2 are denoted by aI1 and aI2,

respectively. Firms’ initial states are commonly known.

8



Strategies

In our model, each firm’s information on its opponent is not updated. Hence, the game

is static, although the firms’ decisions are dynamic. In accordance with the standard

result from search theory that each firm’s optimal strategy is a constant cut-off rule, we

make the following assumption.9

Assumption 1.1. Firm i’s strategy space is SFi := {−1} ∪ [aIi , 1].

A strategy âi ∈ [aIi , 1] represents a constant cut-off rule of Firm i: at any time

point t ∈ [0, T ), Firm i stops searching if it is in a state above âi and continues searching

if in a state below or at âi.
10 A strategy âi = −1 represents that Firm i does not conduct

a search.

Suppose both firms have no initial innovation. Without this assumption, for any

given strategy played by a firm’s opponent, there is a constant cut-off rule being the

firm’s best response. Such a cut-off value being above zero is the unique best response

strategy, ignoring elements associated with zero probability events. However, in the

cases in which a firm is indifferent between continuing searching and not if it is in state 0,

this firm has (uncountably) many best response strategies. The above assumption helps

us to focus on the two most natural strategies: not to search at all and to search with

0 as the cut-off.11 A full justification for this assumption is provided in the appendix.

Let P̃ [a|âi, aIi ] denote the probability of Firm i ending up in a state below a if it

adopts a strategy âi and its initial state is aIi ; let E[cost|âi] denote Firm i’s expected

cost on search if it adopts a strategy âi. Firm i’s ex ante expected utility is

Ui =

∫ 1

0

P [a|â−i, aI−i]dP [a|âi, aIi ]− E[cost|âi].

Now, we are ready to study equilibrium behavior. The solution concept we use is

Nash equilibrium. Before solving the case with a head starter, we first look at the case

with no initial innovation.

2 The Symmetric-Firms Benchmark (aIi = 0)

In this section, we look at the benchmark case, in which both firms start with no

innovation. It is in the spirit of Taylor’s (1995), except that it is in continuous time.

9See Lippman and McCall (1976) for the discussion on optimal stopping strategies for searching
with finite horizon and recall.

10Once Firm i stops searching at some time point it shall not search again later.
11Without this assumption, there can be additional best response strategies of the following type: a

firm randomizes between searching and not searching until a time T ′ < T with cutoff 0 and stops at
T ′ even if no discovery was made.
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The equilibrium strategies are presented below.12

Theorem 2.1. Suppose aI1 = aI2 = 0.

i. If c ∈ [1
2
λ(1+e−λT ), λ), there are two equilibria, in each of which one firm searches

with 0 as the cut-off and the other firm does not search.

ii. If c ∈ [1
2
λ(1 − e−λT ), 1

2
λ(1 + e−λT )), there is a unique equilibrium, in which both

firms search with 0 as the cut-off.

iii. If c ∈ (0, 1
2
λ(1− e−λT )), there is a unique equilibrium, in which both firms search

with a∗ as the cut-off, where a∗ > 0 is the unique value that satisfies

1

2
λ[1− F (a∗)]

[
1− e−λT [1−F (a∗)]

]
= c. (1)

Proof. See Appendix A.2.

0

λ
2

λ

y = 2x

Region 1

Region 3

Region 2

c = 1
2
λ(1 + e−λ))

c = 1
2
λ(1− e−λ))

T value

c
va

lu
e

Figure 1

The result is illustrated in figure 1. The deadline-cost space is divided into three

regions.13 In Region 1, the search cost is so high that it is not profitable for both

firms to innovate. In Region 2, both firms would like to conduct a search in order to

discover an innovation with any value, but none has the incentive to spend additional

effort to find an innovation with a high value. In Region 3, both firms exert efforts to

find an innovation with a value above a certain level. In this case, a firm in the cut-off

state is indifferent between continuing and stopping searching. This is represented by

12When search cost is low, the equilibrium is unique even without assumption 1.1. When search is
high, without Assumption 1.1, there are additional symmetric equilibria of the following type: each
firm randomizes between not participating and participating until a time T ′ < T with 0 as the cutoff.

13In this paper, an “ area” is defined by the interior of the corresponding area.
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equation (1), in which 1− e−λT [1−F (a∗)] is the probability of a firm’s opponent ending up

in a state above a∗ and 1
2
[1− F (a∗)] is the increase in the probability of winning if the

firm, in state a∗, obtains a new innovation. Hence, this equation represents that, in the

cut-off state, the instantaneous increase in the probability of winning from continuing

searching equals the instantaneous cost of searching. As T goes to infinity, c = λ
2

becomes the separation line for Case [i] and Case [iii].

Generally, there is no closed form solution for the cut-off value in Case [iii]. However,

if the search cost is very low, we have a simple approximation for it.

Corollary 2.1. Suppose aI1 = aI2 = 0. When c is small, a∗ ≈ F−1
(

1−
√

2c
λ2T

)
.

Proof. First, we assume that λT [1−F (a∗)] is small, and we come back to check that it

is implied by that c is small. Applying equation (1), we have

c

λ
=

1

2
[1− F (a∗)]

[
1− e−λT [1−F (a∗)]

]
≈ 1

2
λT [1− F (a∗)]2

⇔[1− F (a∗)]2 ≈ 2c

λ2T

⇔a∗ ≈ F−1

(
1−

√
2c

λ2T

)
and λT [1− F (a∗)] ≈

√
2cT .

For later reference we, based on the previous theorem, define a function a∗ : (0, λ)×
[0,+∞)→ [0, 1] where

a∗(c, T ) =

0 for c ∈ [1
2
λ(1− e−λT ), λ)

the a∗ that solves (1) for c ∈ (0, 1
2
λ(1− e−λT )).

A simple property which will be used in later sections is stated below.

Lemma 2.1. In Region 3, a∗(c, T ) is strictly increasing in T (and λ) and strictly

decreasing in c.

There are two observations. One is that a∗(c, T ) = 0 if c ≥ λ
2
. The other is that

a∗(c, T ) converges to F−1(1 − 2c
λ

) as T goes to infinity if c < λ
2
, which derives from

taking the limit of equation (1) w.r.t. T . Let us denote a∗L as the limit of a∗(c, T ) w.r.t.

T :

a∗L := lim
T→+∞

a∗(c, T ) =

0 for c ≥ λ
2
,

F−1(1− 2c
λ

) for c < λ
2
.

We end this section by presenting a full rent dissipation property of the contest when

the deadline approaches infinity.
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Lemma 2.2. Suppose aI1 = aI2 = 0. If c < λ
2
, each firm’s expected payoff in equilibrium

goes to 0 as the deadline T goes to infinity.

Proof. See Appendix A.2.

The intuition is as follows. The instantaneous increase in the expected payoff from

searching for a firm who is in state a∗(c, T ), the value of the equilibrium cut-off, is 0 (it

is indifferent between continuing searching and not). If the deadline is finite, a firm in

a state below a∗(c, T ) has a positive probability of winning even if it stops searching.

Hence, the firms have positive rents in the contest. As the deadline approaches infinity,

there is no difference between being in a state below a∗(c, T ) and at a∗(c, T ), because the

firm will lose the contest for sure if it does not search. In either case the instantaneous

increase in the expected payoff from searching is 0. Hence, in the limit the firms’ rents

in the contest are fully dissipated.

Though the equilibrium expected payoff goes to 0 in the limit, it is not monotonically

decreasing to 0 as the deadline approaches infinity, because each firm’s expected payoff

converges to 0 as the deadline approaches 0 as well.14

3 Main Results: Exogenous Head Starts (aI1 > aI2)

In this section, we add head starts into the study. Without loss of generality, we assume

that Firm 1 has a better initial innovation than does Firm 2 before competition begins,

i.e., aI1 > aI2. We first derive the equilibrium strategies, and then we explore equilibrium

properties.

3.1 Equilibrium Strategies

Theorem 3.1. Suppose aI1 > aI2.

1. For aI1 > F−1(1 − c
λ
), there is a unique equilibrium, in which no firm searches,

and thus Firm 1 wins the prize.

2. For aI1 = F−1(1− c
λ
), there are many equilibria. In one equilibrium, both firms do

not search. In the other equilibria, Firm 1 does not search and Firm 2 searches

with a value â2 ∈ [aI2, a
I
1] as the cut-off.

3. For aI1 ∈ (a∗(c, T ), F−1(1 − c
λ
)), there is a unique equilibrium, in which Firm 1

does not search and Firm 2 searches with aI1 as the cut-off .

14In fact, by taking the derivative of (12) (as in the appendix) w.r.t. T , one can show that the
derivative at T = 0 is λ−c > 0 and that, if c < λ

2 , (12) is increasing in T for T < min{ 1λ ln λ
c ,

1
λ ln λ

λ−2c}
and decreasing in T for T > max{ 1λ ln λ

c ,
1
λ ln λ

λ−2c}.
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4. For aI1 = a∗(c, T ), there are two equilibria. In one equilibrium, both firms search

with aI1 as the cut-off. In the other equilibrium, Firm 1 does not search and Firm

2 searches with aI1 as the cut-off.

5. For aI1 ∈ (0, a∗(c, T )), there is a unique equilibrium, in which both firms search

with a∗(c, T ) as the cut-off.

Proof. See Appendix A.3.

Remark. Case [4] and [5] exist only when c ≤ 1
2
λ[1− e−λT ] (Region 3).

− 1
λ

ln(1− 2c
λ

) T
0

F−1(1− 2c
λ

)

F−1(1− c
λ

)

1

Td

a∗(c, T ) for c < λ
2

a∗(c, T ) for c ≥ λ
2

No firm searches.

Firm 1 does not search, Firm 2 searches.

Both firms search.

a
I 1

va
lu

e

Figure 2: Thresholds (when c < λ
2 (1− e−λT ) ).

The thresholds in the theorem are depicted in figure 2. The leading case is Case

[3], when the head start is in the middle range. A head start reduces the return of

a search, in terms of the increase in the probability of winning. Having a sufficiently

large initial innovation, Firm 1 loses incentive to search because the marginal increase

in the probability of winning from searching for Firm 1 is too small compared to the

marginal cost of searching, whether Firm 2 searches or not. Firm 2 takes advantage of

that and commits to search until it discovers an innovation better than Firm 1’s initial

innovation. Hence, compared to its equilibrium behavior in the benchmark case, Firm

2 is more active in searching (in terms of a higher cut-off value) when Firm 1 has a

medium-sized head start, and a larger value of head start forces Firm 2 to search more

actively.

In Case [1], Firm 1’s head start is so large that Firm 2 is deterred from competition

because Firm 2 has little chance to win if it searches. Firm 1 wins the prize without

incurring any cost. Moreover, it is independent of the deadline T .

In Case [5], in which Firm 1’s head start is small, the head start has no effect on

either firm’s equilibrium strategy, and both firms search with a∗(c, T ) as the cut-off,
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same as in the benchmark case. The only effect of the head start is an increase in Firm

1’s probability of winning (and a decrease in Firm 2’s).

In brief, a comparison of Theorem 3.1 and Theorem 2.1 shows that a head start of

Firm 1 does not alter its own equilibrium behavior but Firm 2’s. The effect on Firm

2’s equilibrium strategy is not monotone in the head start of Firm 1. The initial state

of Firm 2, the latecomer, is irrelevant to the equilibrium strategies. Figure 3 illustrates

how each firm’s equilibrium strategy changes as the value of the initial innovation of

Firm 1, the head starter, varies.

a∗(c,T ) 1

-1

0

a∗(c,T )

1

aI1

â1

(a) Firm 1

a∗(c,T ) 1

-1

0

a∗(c,T )

F−1(1− c
λ

)

1

F−1(1− c
λ

)

aI1

â2

(b) Firm 2

Figure 3: Firms’ equilibrium cut-off values as the value of Firm 1’s initial innova-
tion, aI1, varies.

Figure 4 illustrates Firm 2’the best responses (when it has no initial innovation) to

Firm 1’s strategies for various values of Firm 1’s initial states. The case in which Firm 1

has a high-value initial innovation is significantly different from the case in which Firm

1 has no initial innovation.

Turning back to Case [3] in the previous result, we notice that the lower bound for

this case to happen does not converge to the upper bound as the deadline approaches

infinity, i.e., a∗L < F−1(1 − c
λ
). The simplest but most interesting result of our paper,

the case of “head starts and doomed losers”, derives.

Corollary 3.1. Suppose aI1 ∈ (a∗L, F
−1(1− c

λ
)).

1. Firm 2’s (Firm 1’s) probability of winning increases (decreases) in the deadline.

2. As T goes to infinity, Firm 2’s probability of winning goes to 1, and Firm 1’s goes

to 0.
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-1 1

-1

α
α′
α′′

1
BR1: when aI1 = 0

BR2: when aI1 = α

BR3: when aI1 = α′

BR4: when aI1 = α′′

a∗(c, T )

â1

â2

Figure 4: Best response projections for Firm 2 as aI1 takes values in {−1, α, α′, α′′}
(c < λ

2 (1− e−λT ) and aI2 = 0 ).

BR1 represents Firm 2’s best responses when no firm has an initial innovation. If
Firm 1 does not search, Firm 2 would search with 0 as the cut-off. If Firm 1 searches
with 0 as the cut-off, Firm 2 would search with a cut-off higher than the equilibrium
cut-off. As Firm 1 further rises its cut-off, Firm 2 would first rise its cut-off and
then lower its cut-off. When the deadline is long, Firm 2 would not search if Firm
1’s cut-off is high. BR2 and BR3 represent Firm 2’s best responses when Firm 1
has an initial innovation with a value slightly above a∗(c, T ), the equilibrium cut-off
when there is no initial innovation. In this case, if Firm 1 does not search, Firm 2’s
best response is to search with the value Firm 1’s initial innovation as the cut-off.
If Firm 1 searches with a cut-off slightly above the value of its initial innovation,
Firm 2’s best response is still to search with the value of Firm 1’s initial innovation
as the cut-off. Once Firm 1’s cut-off is greater than a certain value, Firm 2 would
not search. BR4 represents Firm 2’s best responses when Firm 1 has a high-value
initial innovation. In this case, if Firm 1 does not search, Firm 2 would still search
with the value of Firm 1’s initial innovation as the cut-off; if Firm 1 searches, Firm
2 would have no incentive to search. On the other hand, when the value of Firm 1’s
initial innovation is above a∗(c, T ), Firm 1’s best response to any strategy of Firm
2 is not to search.
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Proof. In equilibrium Firm 1 does not search and Firm 2 searches with aI1 as the cut-off.

Firm 2’s probability of winning is thus

1− e−λT [1−F (aI1)],

which is increasing in T , and it converges to 1 as T goes infinity. Firm 1’s probability

of winning is e−λT [1−F (aI1)], which is, in the contrast, decreasing in T , and it converges

to 0 as T approaches infinity.

This property results from our assumption that search processes are with recall. The

larger the head start is, the smaller the marginal increase in the probability of winning

from searching is, given any strategy played by the latecomer. Hence, even if the head

starter knows that in the long run the latecomer will almost surely obtain an innovation

with a value higher than its initial innovation, the head starter is not going to conduct

a search as long as the instantaneous increase in the probability of winning is smaller

than the instantaneous cost of searching.

3.2 Payoff Comparison across Firms

A natural question arises: which firm does a head start favor? Will Firm 1 or Firm

2 achieve a higher expected payoff? To determine that, we need a direct comparison

of the two firms’ expected payoffs. When aI1 ∈ (a∗(c, T ), F−1(1 − c
λ
)), the difference

between the payoffs of Firm 1 and Firm 2 is15

DF (T, aI1) := e−λT [1−F (aI1)] − (1− e−λT [1−F (aI1)])(1− c

λ[1− F (aI1)]
). (2)

The head start of Firm 1 favors Firm 1 (Firm 2) if DF (T, aI1) > (<)0.

DF (T, aI1) is increasing in aI1 and decreasing in T . Hence, a longer deadline tends

toward to favor Firm 2 when the head start is in the middle range. Since

DF (0, aI1) = 1 > 0

and

lim
T→∞

DF (T, aI1) = −(1− c

λ[1− F (aI1)]
) < 0 for any aI < F−1(1− c

λ
),

there must be a unique T̂ (aI1) > 0 such that DE(T̂ (aI1), aI1) = 0. The following result

derives.

151 − e−λT [1−F (aI1)] is Firm 2’s probability of obtaining an innovation better than Firm 1’s initial
innovation, aI1, and 1

λ[1−F (aI1)]
is the unconditional expected interarrival time of innovations with a

value higher than aI1. The second term in DF (T, aI1) thus represents the expected payoff of Firm 2.
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Proposition 3.1. For aI1 ∈ (a∗L, F
−1(1 − c

λ
)), there is a unique T̂ (aI1) > 0 such that

Firm 1 (Firm 2) obtains a higher expected payoff if T < (>)T̂ (aI1).

That is, for any given value of the head start in the middle range (a∗L, F
−1(1− c

λ
)),

the head start favors the latecomer (head starter) if the deadline is long (short). The

effects of a head start do not vanish as the deadline approaches infinity. In fact, as the

deadline approaches infinity, the head start eventually pushes the whole share of the

surplus to Firm 2.

Lemma 3.1. As the deadline increases to infinity,

1. for aI1 ∈ (0, a∗L), both Firms’ equilibrium payoffs converge to 0;

2. for aI1 ∈ (a∗L, F
−1(1 − c

λ
)), Firm 1’s equilibrium payoff converges to 0, whereas

Firm 2’s equilibrium payoff converges to 1− c
λ[1−F (aI1)]

∈ (0, 1
2
).

Proof. [1] follows from Lemma 2.2. [2] follows from Corollary 3.1 and the limit of Firm

2’s expected payoff

(1− e−λT [1−F (aI)])

(
1− c

λ[1− F (aI1)]

)
(3)

w.r.t. T .

A comparison to Lemma 2.2 shows that, just as having no initial innovation, when

Firm 1 has an innovation whose value is not of very high, its expected payoff still con-

verges to 0 as the deadline becomes excessively long. When there is no initial innovation,

the expected total surplus for the firms (i.e., the sum of the two firms’ expected payoff)

converges to 0. In contrast, when there is a head start with a value above a∗L, the

expected total surplus is strictly positive even when the deadline approaches infinity.

However, as it approaches infinity, this total surplus created by the head start of Firm 1

goes entirely to Firm 2, the latecomer, if the head start is in the middle range. The intu-

ition is as follows. For Firm 1, it is clear that its probability of winning converges to 0 as

the deadline goes to infinity. For Firm 2, we first look at the case that aI1 = F−1(1− c
λ
).

In this case Firm 2 is indifferent between searching and not searching, and thus the ex-

pected payoff is 0. As the deadline approaches infinity, both expected cost of searching

and the probability of winning converges to 1, if Firm 2 conducts a search. Then, if

aI1 is below F−1(1 − c
λ
) (but above a∗L), as the deadline approaches infinity, Firm 2’s

probability of winning still goes to 1, but the expected cost of searching drops to a value

below 1 because it adopts a lower cut-off for stopping. Hence, Firm 2’s expected payoff

converges to a positive value.
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The relationship between the rank order of the two Firms’ payoffs and the deadline

is illustrated in figure 5, in each of which Firm 2 obtains a higher expected payoff at

each point in the colored area. (a) is for the cases in which c ≤ λ
2
. In these cases a

longer deadline tends to favor the latecomer. (b) and (c) are for the cases in which

c > λ
2
. In these cases, the rank order is not generally monotone in the deadline and the

head start.
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(a) c ∈ [λ2 , λ]

1
λ

ln
2− c

λ
1− c

λ

− 1
λ

ln(1− 2c
λ

) T
0

F−1(1− 2c
λ

)

F−1(1− c
λ

)
1

Td

DE(T, aI1) = 0

a∗(c, T )

a
I 1

va
lu

e

(b) c ∈ [(1−
√
2
2 )λ, λ2 ]

− 1
λ

ln(1− 2c
λ

) 1
λ

ln
2− c

λ
1− c

λ

T
0

F−1(1− 2c
λ

)

F−1(1− c
λ

)
1

Td

DE(T, aI1) = 0

a∗(c, T )

a
I 1

va
lu

e

(c) c ∈ [0, (1−
√
2
2 )λ]

Figure 5: When (aI1, T ) lies in the colored area, the head start favors the latecomer.

We notice in all the figures that if the deadline is sufficiently short, a head start is

ensured to bias toward Firm 1, whereas if it is long, only a relatively large head start

biases toward Firm 1.
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4 Effects of Head Starts on Payoffs

In this section, we study the effects of a head start on both firms’ payoffs. Suppose

Firm 2 has no initial innovation, who does a head start of Firm 1 benefit or hurt? The

previous comparison between Theorem 2.1 and Theorem 3.1 already shows that a head

start aI1 benefits Firm 1 and hurts Firm 2 if aI1 < a∗(c, T ) or aI1 > F−1(1 − c
λ
). In the

former case, which happens only when a∗(c, T ) > 0 (Region 3 of figure 1), both firms

search with a∗(c, T ) as the cut-off, the same as when there is no head start, and the head

start increases Firm 1’s probability of winning and decreases Firm 2’s. As the deadline

goes to infinity, the expected payoffs to both firms converge to 0, with the effect of the

head start disappearing. In the latter case, Firm 1 always obtains a payoff of 1, and

Firm 2 always 0.

The interesting case occurs then when the head start is in the middle range, aI1 ∈
(a∗(c, T ), F−1(1− c

λ
)), which is the focus in the remaining parts of the paper. To answer

the above question regarding the head start being in the middle range, we first analyze

the case that point (c, T ) lies in Regions 2 and 3 (in figure 1), and then we turn to

analyze the case of Region 1.

4.1 Regions 2 and 3

In the previous section, we showed that for T being sufficiently long, Firm 1 is almost

surely going to lose the competition if aI1 is in the middle range. Although it seems

reasonable that in this case a head start may make Firm 1 worse off, the following

proposition shows that this conjecture is not true.

Proposition 4.1. Suppose aI2 = 0. In Regions 2 and 3, in which c < 1
2
λ(1 + e−λT ), a

head start aI1 > 0 always benefits Firm 1, compared to the equilibrium payoff it gets in

the benchmark case.

To give the intuition, we consider the case of a∗(c, T ) > 0. Suppose Firm 1 has a

head start aI1 = a∗(c, T ). As shown in Case [4] of Theorem 3.1, we have the following two

equilibria: in one equilibrium both firms search with a∗(c, T ) as the cut-off; in another

equilibrium Firm 1 does not search and Firm 2 searches with a∗(c, T ) as the cut-off.

Firm 1 is indifferent between these two equilibria, hence its expected payoffs from both

equilibria are e−λT [1−F (a∗(c,T ))], the probability of Firm 2 finding no innovation with a

value higher than a∗(c, T ). However, Firm 1’s probability of winning increases in its

head start, hence a larger head start gives Firm 1 a higher expected payoff.

The above result itself corresponds to expectation. What unexpected is the mecha-

nism through which Firm 1 gets better off. As a head start gives Firm 1 a higher position,

we would expect that it is better off by (1) having a better chance to win and (2) spending
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less on searching. Together with Theorem 3.1, the above proposition shows that Firm

1 is better off purely from an increase in the probability of winning when aI1 < a∗(c, T );

purely from spending nothing on searching when aI1 ∈ (a∗(c, T ), F−1(1 − c
λ
)) (though

there could be a loss from a decrease in the probability of winning); from an increase in

the probability of winning and a reduction in the cost of searching when aI1 > F−1(1− c
λ
).

In contrast to the effect of a head start of Firm 1 on Firm 1’s own expected payoff,

the effect on Firm 2’s expected payoff is not clear-cut. Instead of giving a general picture

of the effect, we present some properties in the following.

Proposition 4.2. Suppose aI2 = 0.

1. A head start aI1 ∈ (0, F−1(1 − c
λ
)) hurts Firm 2 if the deadline T is sufficiently

small.

2. If c < λ
2
, a head start aI1 ∈ (a∗L, F

−1(1 − c
λ
)) benefits Firm 2 if the deadline is

sufficiently long.

Proof. See Appendix A.3.

Case [1] occurs because a head start of Firm 1 reduces Firm 2’s probability of winning

and may increase its expected cost of searching. Case [2] follows from Propositions 4.1

and 3.1. Because a head start of Firm 1 always benefits Firm 1 and a long deadline

favors Firm 2, a head start must also benefit Firm 2 if the deadline is long.16

Figure 6 illustrates how Firm 2’s equilibrium payoff changes as Firm 1’s head start

increases. In particular, a head start of Firm 1 slightly above a∗(c, T ), the equilibrium

cut-off when there is no initial innovation, benefits Firm 2 if a∗(c, T ) is low. Some more

conditions under which a head start benefits or hurts the latecomer are given below.

-1 0 α̃ ˜̃α F−1(1− c
λ

) 1

When a∗(c, T ) = α̃

When a∗(c, T ) = ˜̃α

aI1

U2

Figure 6: Firm 2’s equilibrium payoffs as a∗(c, T ) varies.

Proposition 4.3. In Region 2 and 3, in which c < 1
2
λ(1 + e−λT ),

16Alternatively, it also follows from Lemmas 2.2 and 3.1. If the deadline is very long and the head
start of Firm 1 is in the middle range, Firm 2’s payoff converges to 0 same as in the benchmark case
and some positive value in head start case.
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1. if

(1− e−λT [1−F (a∗(c,T ))])− 1

2
(1− e−2λT ) > 0, (4)

there exists a ãI1 ∈ (a∗(c, T ), F−1(1− c
λ
)) such that the head start aI1 hurts Firm 2

if aI1 ∈ (ãI1, F
−1(1− c

λ
)) and benefits Firm 2 if aI1 ∈ (a∗(c, T ), ãI1);

2. if (4) holds in the opposite direction, any head start aI1 ∈ (a∗(c, T ), F−1(1 − c
λ
))

hurts Firm 2.

Proof. See Appendix A.3.

The first term on the left side of inequality (4) is Firm 2’s probability of winning in

the equilibrium in which Firm 2 searches and Firm 1 does not search in the limiting case

that Firm 1 has a head start of a∗(c, T ). The second term, excluding the minus sign,

is Firm 1’s probability of winning when there is no head start. The expected searching

costs are the same in both cases. The following corollary shows some scenarios in which

inequality (4) holds.

Corollary 4.1. In Region 2, when a∗(c, T ) = 0, inequality (4) holds.

This shows that for search cost lying in the middle range, a head start of Firm 1

must benefit Firm 2, if it is slightly above 0. The simple intuition is as follows. When

Firm 1 has such a small head start, Firm 2’s cut-off value of searching increases by only

a little bit, and thus the expected cost of searching also increases slightly. However, the

increase in Firm 2’s probability of winning is very large, because Firm 1, when having

a head start, does not search any more. Thus, in this case Firm 2 is strictly better off.

Lastly, even though Firm 1 does not search when the head start aI1 > a∗(c, T ), it

seems that a low search cost may benefit Firm 2. On the contrary, a head start of Firm

1 would always hurt Firm 2 when the search cost is sufficiently small.

Corollary 4.2. For any fixed deadline T , if the search cost is sufficiently small, in-

equality (4) holds in the opposite direction.

Proof. As c being close to 0, a∗(c, T ) is close to 1, and thus the term on left side of

inequality (4) is close to −1
2
(1− e−2λT ) < 0.

That is because when c is close to 0, a∗(c, T ) is close to 1, and the interval in which

Firm 1 does not search while Firm 2 searches is very small, and thus the chance for

Firm 2 to win is too low when aI1 > a∗(c, T ), even though the expected cost of searching

is low as well.

21



4.2 Region 1

Since there are multiple equilibria in the benchmark case when (c, T ) lies in Region 1,

whether a head start hurts or benefits a firm depends on which equilibrium we compare

to. If we compare the two equilibria in each of which Firm 1 does not search and Firm

2 searches, then the head start benefits Firm 1 and hurts Firm 2. If we compare to the

other equilibrium in the benchmark case, the outcome is not clear-cut.

Proposition 4.4. Suppose aI2 = 0. In Region 1, in which c > 1
2
λ(1 + e−λT ) and

a∗(c, T ) = 0, for aI1 ∈ (0, F−1(1− c
λ
)), if

(1− e−λT )(1− c

λ
)− e−λT [1−F (aI1)] < 0, (5)

Firm 1’s equilibrium payoff is higher than its expected payoff in any equilibrium in the

benchmark case. If the inequality holds in the opposite direction, Firm 1’s equilibrium

payoff is lower than its payoff in the equilibrium in which Firm 1 searches and Firm 2

does not search in the benchmark case.

This result is straightforward. The first term on the left side of inequality (5) is Firm

1’s expected payoff in the equilibrium in which Firm 1 searches and Firm 2 does not

in the benchmark case and the second term, excluding the minus sign, is its expected

payoff when there is no head start.

Moreover, the left hand side of inequality (5) strictly increases in T , and it reaches

−1 when T approaches 0 and 1− c
λ

when T approaches infinity. The intermediate value

theorem insures that inequality (5) holds in the opposite direction for the deadline T

being large.

As a result of the above property, when the head start is small and the deadline is

long, in an extended game in which Firm 1 can publicly discard its head start before the

contest starts, there are two subgame perfect equilibria: in one equilibrium, Firm 1 does

not discard its head start and Firm 2 searches with the Firm 1’s initial innovation value

as the cut-off; in the other equilibrium, Firm 1 discards the head start and searches

with 0 as the cut-off and Firm 2 does not search. Hence, there is the possibility that

Firm 1 can improve its expected payoff if it discards its head start.

Last, we discuss Firm 2’s expected payoff. The result is also straightforward.

Proposition 4.5. Suppose aI2 = 0. In Region 1, in which c > 1
2
λ(1 + e−λT ), for

aI1 ∈ (0, F−1(1− c
λ
)), Firm 2’s equilibrium payoff is

• less than its expected payoff in the equilibrium in which Firm 1 does not search

and Firm 2 searches in the benchmark case, and

• higher than the payoff in the equilibrium in which Firm 1 searches and Firm 2

does not search in the benchmark case.
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Proof. Compared to the equilibrium in which Firm 2 searches in the benchmark case, in

the equilibrium when Firm 1 has a head start, Firm 2 has a lower expected probability

of winning and a higher expected cost because of a higher cut-off, and and thus a lower

expected payoff. But this payoff is positive.

5 Extended Dynamic Models

In this section, we study two extended models.

5.1 Endogenous Head Starts (aI1 > aI2 > 0)

We first study how the firms would play if each firm has the option to discard its initial

innovation before the contest starts. Formally, a game proceeds as below.

Model∗:

• Stage 1: Firm i decides whether to discard its initial innovation.

• Stage 2: Firm i’s opponent decides whether to discard its initial innovation.

• Stage 3: Upon observing the outcomes in the previous stages, both firms simulta-

neously start playing the contest as described before.

The incentive for a head starter to discard its initial innovation when the latecomer

has no initial innovation has been studied in the previous section. The focus of the

section is on the case in which both firms have an initial innovation in the middle

range.17 The main result of this section is as follows.

Proposition 5.1. Suppose aI1, a
I
2 ∈ (a∗L, F

−1(1− c
λ
)). In Model∗ with Firm 1 having the

first move, there is a T̆ (aI1, a
I
2) > 0 such that

• if T > T̆ (aI1, a
I
2), there is a unique subgame perfect equilibrium (SPE), in which

Firm 1 discards its initial innovation and searches with aI2 as the cut-off and Firm

2 keeps its initial innovation and does not search;

• if T < T̆ (aI1, a
I
2), subgame perfect equilibria exist, and in each equilibrium Firm 2

searches with aI1 as the cut-off and Firm 1 keeps its initial innovation and does

not search.

Proof. See Appendix A.4.

17As shown in Proposition 4.1, when (c, T ) lies in Regions 2 and 3, the head starter with a medium-
sized initial innovation has no incentive to discard its head start if the latecomer has a no innovation.
The head starter would also have no incentive to discard its initial innovation when the latecomer has
a low-value initial innovation.
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This proposition shows that in the prescribed scenario Firm 1 is better off giving up

its initial innovation if the deadline is long.18 The intuition is simple. For the deadline

being long, Firm 1’s expected payoff is low, because its probability of winning is low.

By giving up its initial innovation, it makes Firm 2 the head starter, and thus Firm 1

obtains a higher expected payoff than before by committing to searching whereas Firm

2 has no incentive to search. Yet the reasoning for the case in which c ≤ λ
2

differs from

that for the case in which c > λ
2
. After Firm 1 discards its initial innovation, Firm

2 turns to the new head start firm. In the former case, Firm 2 would then have no

incentive to discard its initial innovation any more as shown in Proposition 4.1, and its

dominant strategy in the subgame is not to search whether Firm 1 is to search or not.

In the latter case, Firm 2 may have the incentive to discard its initial innovation and

search if the deadline is long. However, discarding the initial innovation is a credible

threat for Firm 1 to deter Firm 2 from doing that.

Remark. When the deadline is sufficiently long, by giving up the initial innovation,

Firm 1 makes itself better off but Firm 2 worse off. However, if the deadline is not

too long, by doing so, Firm 1 can benefit both firms. This is because the total expected

cost of searching after Firm 1 discards its initial innovation is lower than before and

hence there is an increase in the total surplus for the two firms. It is then possible that

18Discarding a head start is one way to give up one’s initial leading position. In reality, a
more practical and credible way is to give away the head start innovation. A head start firm
could give away it patent for its technology. By doing so, any firm can use this technology for
free. That is, every firm’s initial state becomes aI1. If firms can enter the competition freely, the
value of the head start technology is approximately zero to any single firm, because everyone has
approximately zero probability to win with this freely obtained innovation. For a head start being
in the middle range, the market is not large enough to accommodate two firms to compete. Hence,
to model giving away head starts with free entry to the competition, we can study a competition
between two firms but with some modified prize allocation rules. Formally, the game proceeds as below.

Model∗∗:

• Stage 1: Firm 1 decides whether to give away its initial innovation.

• Stage 2: Upon observing the stage 1 outcome, Firm 1 and Firm 2 simultaneously start playing
the contest as described before.

• If Firm 1 gives away its initial innovation:

– Both firms’ states at time 0 become aI1.

– The prize is retained if no firm is in a state above aI1 at the deadline T .

– The firm with a higher state, which is higher than aI1, at the deadline wins.

• If Firm 1 retains its initial innovation, the firm with a higher state at the deadline wins.

Suppose aI1 ∈ (a∗L, F
−1(1 − c

λ )). If the deadline is long, in Model∗∗ there are two subgame perfect
equilibria. In one equilibrium, Firm 1 gives away its initial innovation and searches with aI1 as the
cut-off and Firm 2 does not search. In the other equilibrium, Firm 1 retains its initial innovation and
does not search and Firm 2 searches with aI1 as the cut-off. However, forward induction selects the first
equilibrium as the refined equilibrium, because giving away a head start is a credible signal of Firm 1
to commit to search.
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both firms get a share of the increase in the surplus. We illustrate that in the following

example.

Example 5.1. Suppose F is the uniform distribution, c = 1
3
, λ = 1, aI1 = 1

2
, and

aI2 = 1
3
. If Firm 1 discards its initial innovation, then its expected payoff would be

1
2
(1 − e−T3 ), and Firm 2’s expected payoff would be e−

T
3 ; if Firm 1 does not discard its

initial innovation, then its expected payoff would be e−
T
2 , and Firm 2’s expected payoff

would be 1
3
(1− e−T2 ).

Firm 1 would be better off by discarding its initial innovation if T > 2.52. If T ∈
(2.52, 3.78), by discarding the initial innovation, Firm 1 makes both firms better off. If

T is larger, then doing so would only make Firm 2 worse off.

The previous result is conditional on Firm 1 having the first move. If Firm 2 has

the first move, it may, by discarding its initial innovation, be able to prevent Firm

1 from discarding its own head start and committing to searching. However, if the

deadline is not sufficiently long, Firm 1 would still have the incentive to discard its

initial innovation.

Proposition 5.2. Suppose aI1, a
I
2 ∈ (a∗L, F

−1(1− c
λ
)). In Model∗ with Firm 2 having the

first move, there is a T̂ (aI1, a
I
2) > 0 such that

• for T > T̂ (aI1, a
I
2), there is a unique SPE, in which Firm 2 discards its initial inno-

vation and searches with aI2 as the cut-off and Firm 1 keeps the initial innovation

and does not search;

• for T ∈ (T̆ (aI1, a
I
2), T̂ (aI1, a

I
2)), there is a unique SPE, in which Firm 2 keeps its

initial innovation and does not search and Firm 1 discards its initial innovation

and searches with aI1 as cut-off;

• for T < T̆ (aI1, a
I
2), subgame perfect equilibria exist, and in each equilibrium Firm

2 searches with cut-off aI1 and Firm 1 keeps its initial innovation and does not

search.

Proof. See Appendix A.4.

In the middle range of the deadline, even though Firm 2 can credibly commit to

searching and scare Firm 1 away from competition by discarding its initial innovation, it

is not willing to do so, yet Firm 1 would like to discard its initial innovation and commit

to searching. This is because Firm 1’s initial innovation is of a higher value than Firm

2’s. The cut-off value of the deadline at which Firm 2 is indifferent between discarding

the initial innovation to commit to searching, and keeping the initial innovation, is

higher than that of Firm 1.
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5.2 Intermediate Information Disclosure

In the software industry, it is common to preannounce with a long lag to launch (Bayus

et al., 2001). Many firms do that by describing the expected features or demonstrating

prototypes at trade shows. Many other firms publish their findings in a commercial dis-

closure service, such as Research Disclosure, or in research journals.19 Suppose there is a

regulator who would like to impose an intermediate information disclosure requirement

on innovation contests. What are the effects of the requirement on firms’ competition

strategies and the expected value of the winning innovation. Specifically, suppose there

is a time point t0 ∈ (0, T ) at which both firms have to reveal everything they have, how

would firms compete against each other?

When the head start aI1 is larger the threshold F−1(1− c
λ
), it is clear that no firm has

an incentive to conduct any search. When the head start is below this threshold, if t0

is very close to T , information revelation has little effect on the firms’ strategies. Both

firms will play approximately the same actions before time t0 as they do when there

is no revelation requirement. After time t0, the firm in a higher state at time t0 stops

searching. The other firm searches with this higher state as the cut-off if this higher

state is below F−1(1− c
λ
), and stops searching as well if it is higher than F−1(1− c

λ
).

Our main finding in this part regards the cases in which the head start is in the

middle range and the deadline is sufficiently far from the information revelation point.20

That is, firms have to reveal their progress at an early stage of a competition.

Proposition 5.3. Suppose at a time point t0 ∈ (0, T ) both firms have to reveal their

discoveries. For aI1 ∈ (a∗L, F
−1(1− c

λ
)) and aI2 < aI1, if T − t0 is sufficiently large, there

is a unique subgame perfect equilibrium, in which

• Firm 1 searches with F−1(1− c
λ
) as the cut-off before time t0 and stops searching

from time t0;

• Firm 2 does not search before time t0 and searches with aI1 as the cut-off from time

t0 if aI1 < F−1(1− c
λ
).

Proof. See Appendix A.4.

In the proof, we show that between time 0 and time t0, the dominant action of Firm

2 is not to search, given that the equilibria in the subgames from time t0 are described

as in Theorem 3.1. If Firm 1 is in a state higher than the threshold F−1(1− c
λ
) at time

t0, Firm 2’s effort will be futile if it searches before time t0. If Firm 1 is in a state in

19Over 90% of the world’s leading companies have published disclosures in Research Disclosure’s
pages (see www.researchdisclosure.com).

20Generally, for the cases in which aI1 < a∗L, there are many subgame perfect equilibria, including
two equilibria in each of which one firm searches with F−1(1 − c

λ ) as the cut-off between time 0 and
time t0 and the other firm does not.
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between its initial state aI1 and and the threshold F−1(1 − c
λ
) at time t0, Firm 2 has

the chance to get into a state above the threshold F−1(1− c
λ
) and thus a continuation

payoff of 1, but this instantaneous benefit only compensates the instantaneous cost of

searching. Firm 2 also has the chance to get into a state above that of Firm 1 but

below the threshold F−1(1 − c
λ
) at time t0, which results in a continuation payoff of

approximately 0 if the deadline is sufficiently long, whereas it obtains a strictly positive

payoff if it does not search before time t0. It is thus not worthwhile for Firm 2 to

conduct a search before time t0. If Firm 2 does not search before time t0, Firm 1 then

has the incentive to conduct a search if the deadline is far from t0. If it does not search,

it obtains a payoff of approximately 0 when T − t0 is sufficiently large. If it conducts a

search before time t0, the benefit from getting into a higher state can compensate the

cost.

An early stage revelation requirement therefore hurts the latecomer and benefits the

head starter. It gives the head starter a chance to get a high-value innovation so as

to deter the latecomer from competition. It also increases the expected value of the

winning innovation.

6 Discussion: Asymmetric Costs (aIi = 0, c1 < c2)

In this section, we show that, compared to the effects of head starts, the effects of

cost advantages are simpler. A head start probably discourages a firm from conduct-

ing searching and can either discourage its competitor from searching or encourage its

competitor to search more actively. In contrast, a cost advantage encourages a firm to

search more actively and discourages its opponent.

We now assume that the value of pre-specified prize to Firm i, i = 1, 2, is Vi and that

the search cost is for Firm i is Ci per unit of time. However, at each time point Firm

i only makes a binary decision on whether to stop searching or to continue searching.

Whether it is profitable to continue searching depends on the ratio of Ci
Vi

rather than

the scale of Vi and Ci. Therefore, we can normalize the valuation of each player to be

1 and the search cost to be Ci
Vi

=: ci. W.l.o.g, we assume c1 < c2. For convenience, we

define a function

I(ai|aj, ci) := λ

∫ ā

ai

[Z(a|aj)− Z(ai|aj)]dF (a)− ci,

where Z(a|aj) is defined, in Lemma A.2 in the appendix, as Firm j’s probability of

ending up in a state below a if it searches with aj as the cut-off. We emphasize on the

most important case, in which both firms’ search costs are low.

Proposition 6.1. For 0 < c1 < c2 <
1
2
λ(1−e−λT ), there must exist a unique equilibrium
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(a∗1, a
∗
2), in which a∗1 > a∗2 ≥ 0. Specifically,

1. if I
(

0|F−1
(

1−
√

2c1
λ(1−e−λT )

)
, c2

)
> 0, the unique equilibrium is a pair of cut-off

rules (a∗1, a
∗
2), a∗1 > a∗2 > 0, that satisfy

λ

∫ ā

a∗i

[
Z(a|a∗j , T )− Z(a∗i |a∗j , T )

]
dF (a) = ci;

2. if I
(

0|F−1
(

1−
√

2c1
λ(1−e−λT )

)
, c2

)
≤ 0, the unique equilibrium is a pair of cut-off

rules
(
F−1

(
1−

√
2c1

λ(1−e−λT )

)
, 0
)

.

Proof. See Appendix A.5

The existence of equilibrium is proved by using Brouwer’s fixed point theorem. As

expected, a cost (valuation) advantage would drive a firm to search more actively than

its opponent. The following statement shows that while an increase in cost advantage

of the firm in advantage would make the firm more active in searching and its opponent

less active, a further cost disadvantage of the firm in disadvantage would make both

firms less active in searching.

Proposition 6.2. For 0 < c1 < c2 <
1
2
λ(1−e−λT ) and I

(
0|F−1

(
1−

√
2c

λ(1−e−λT )

)
, c2

)
>

0, in which case there is a unique equilibrium (a∗1, a
∗
2), a∗1, a

∗
2 > 0,

1. for fixed c2,
∂a∗1
∂c1

< 0 and
∂a∗2
∂c1

> 0;

2. for fixed c1,
∂a∗1
∂c2

< 0 and
∂a∗2
∂c2

< 0.

Proof. See Appendix A.5

The intuition is simple. When the cost of the firm in advantage decreases, this firm

would be more willing to search, while the opponent firm would be discouraged because

the marginal increase in the probability of winning from continuing searching in any

state is reduced, and therefore the opponent firm would lower its cut-off. When the

cost of the firm at a disadvantage increases, the firm would be less willing to search,

and the opponent firm would consider it less necessary to search actively because the

probability of winning in any state has increased.

A comparison between the equilibrium strategies in this model and that of the

benchmark model can be made.

Corollary 6.1. For 0 < c1 < c2 <
1
2
λ(1−e−λT ) and I

(
0|F−1

(
1−

√
2c

λ(1−e−λT )

)
, c2

)
>

0, in which case there is a unique equilibrium (a∗1, a
∗
2), a∗1 > a∗2 > 0, a∗1 and a∗2 satisfy

1. a∗1 < a∗(c, T ) for the corresponding c = c2 > c1;
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c2 \ c1 Region 1 Region 2 Region 3

Region 1 (a∗1, a
∗
2)

(
F−1

(
1−

√
2c1

λ(1−e−λT )

)
, 0
)

(0,−1)

Region 2 / (0, 0) (0,−1)

Region 3 / / (0,−1), (−1, 0)

Table 1: Equilibria in all non-marginal cases.

2. a∗2 < a∗(c, T ) for the corresponding c = c1 < c2.

Based on the benchmark model, a cost reduction for Firm 1 will result in both firms

searching with cut-offs below the original one; a cost increase for Firm 2 will certainly

result in Form 2 searching with a cut-off below the original one.

The equilibrium for the other non-marginal cases (conditional on c1 < c2), together

with the above case, are stated in Table 1 without proof. The regions in Table 1

are the same as in Figure 1. The row (column) number indicates in which region c1

(c2) lies, and each element in each cell represents a corresponding equilibrium. For

example, the element in the cell at the second row and the second column means that

for c1, c2 ∈ (1
2
λ(1 − e−λT ), 1

2
λ(1 + e−λT )), there is a unique equilibrium, in which both

firms search with cut-off 0. This shows that Firm 1 is more active in searching than is

Firm 2.

Remark. Similar results can be found in a model with the same search cost but with

different arrival rates of innovations for the two firms.

7 Concluding Remarks

This paper has studied the long-run effects of head starts in innovation contests in which

each firm decides when to stop a privately observed repeated sampling process before

a preset deadline. Unlike an advantage in innovation cost or innovation ability, which

encourages a firm to search more actively for innovations and discourages its opponent,

a head start has non-monotone effects. The head starter is discouraged from searching

if the head start is large, and its strategy remains the same if the head start is small.

The latecomer is discouraged from searching if the head start is large but is encouraged

to search more actively if it is in the middle range. Our main finding is that, if the

head start is in the middle range, in the long run, the head starter is doomed to lose

the competition with a payoff of zero and the latecomer will take the entire surplus for

the competing firms. As a consequence, our model can exhibit either the “preemption

effect” or the “replacement effect”, depending on the value of the head start.
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Our results have implications on antitrust problems. Market regulators have con-

cerns that the existence of market dominating firms, such as Google, may hinder com-

petitions, and they take measures to curb the monopoly power of these companies. For

instance, the European Union voted to split Google into smaller companies.21 Our re-

sults imply that in many cases the positions of the dominant firms are precarious. In

the long run, they will be knocked off their perch. These firms’ current high positions,

in fact, may promote competitions in the long run because they encourage their rivals

to exert efforts to innovate and reach high targets. Curbing the power of the current

dominating firms may benefit the society and these firms’ rivals in the short run, but

in the long run it hurts the society because it discourages innovation. However, the the

dominating firms’ positions are excessively high, which deters new firms from entering

the the market, a market regulator could take some actions.

The results have also implications on R&D policies. When selecting an R&D policy,

policy makers have to consider both the nature of the R&D projects and the mar-

ket structure. If the projects are on radical innovations, subsidizing innovation costs

effectively increases competition when the market is blank (no advanced substitutive

technology exists in the market). However, when there is a current market dominating

firm with an existing advanced technology, a subsidy may not be effective. The domi-

nating firm has no incentive to innovate, and the latecomer, even if it is subsidized, will

not innovate more actively.

In our model we have only one head starter and one latecomer. The model can be

extended to include more than two firms, and similar results still hold. One extension

of our paper is to study the designing problem in our framework. For example, one

question is how to set the deadline. If the designer is impatient, she may want to

directly take the head starter’s initial innovation without holding a contest; if she is

patient, she may set a long deadline in order to obtain a better innovation. Some other

extensions include: to consider a model with a stochastic number of firms; to consider a

model with cumulative scores with or without regret instead of a model with repeated

sampling.
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A Appendix

A.1 Preliminaries

To justify Assumption 1.1, we show in the following that, for any given strategy played

by a firm’s opponent, there is a constant cut-off rule being the firm’s best response. If

the cut-off value is above zero, it is actually the unique best response strategy, ignoring

elements associated with zero probability events. We argue only for the case that both

firms’ initial states are 0. The arguments for the other cases are similar and thus are

omitted.

Suppose aI1 = aI2 = 0. For a given strategy played by Firm j, we say at time t

ati := inf{ã ∈ A|Firm i weakly prefers stopping to continuing searching in state ã}

is Firm i’s lower optimal cut-off and

āti := inf{ã ∈ A|Firm i strictly prefers stopping to continuing searching in state ã}

is Firm i’s upper optimal cut-off .

Lemma A.1. Suppose aI1 = aI2 = 0. For any fixed strategy played by Firm j, Firm i’s

best response belongs to one of the three cases.

i. Not to search: āti = ati = −1 for all t ∈ [0, T ],

ii. Search with a constant cut-off rule âi ≥ 0: āti = ati = âi ≥ 0 for all t ∈ [0, T ].

iii. Both not to search and search until being in a state above 0: āti = 0 and ati = −1

for all t ∈ [0, T ).

Proof of Lemma A.1. Fix a strategy of Firm j. Let P (a) denote the probability of

Firm j ending up in a state below a at time T . P (a) is either constant in a or strictly
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increasing in a. It is a constant if and only if Firm j does not search.22 If this is the case,

Firm i’s best response is to continue searching with a fixed cut-off âti = āti = ati = 0 for

all t. In the following, we study the case in which P (a) is strictly increasing in a.

Step 1. We argue that, given a fixed strategy played by Firm j, Firm i’s best

response is a (potentially history-dependent) cut-off rule. Suppose at time t Firm i is

in a state ã ∈ [0, 1]. If it is strictly marginally profitable to stop (continue) searching

at t, then it is also strictly marginally profitable to continue searching if it is in a state

higher (lower) than ã. Let the upper and lower optimal cut-offs at time t be āti and ati,

respectively, as defined previously.

Step 2. We show that {āti}Tt=0 and {ati}Tt=0 should be history-independent. We use a

discrete version to approximate the continuous version. Take any t̃ ∈ [0, T ). Let {tl}kl=0,

where tl − tl−1 = T−t̃
k

=: δ for l = 1, ..., k, be a partition of the interval [t̃, T ]. Suppose

Firm i can only make decisions at {tl}kl=0 in the interval [t̃, T ]. Let {ātl}k−1
l=0 and {atl}k−1

l=0

be the corresponding upper and lower optimal cut-offs, respectively, and Gδ(a) be Firm

i’s probability of discovering no innovation with a value above a in an interval δ.

At tk−1, for Firm i in a state a, if it stops searching, the expected payoff is P (a); if

it continues searching, the expected payoff is

Gδ(a)P (a) +

∫ 1

a

P (ã)dGδ(ã)− δci

=P (a) +

∫ 1

a

[P (ã)− P (a)]dGδ(ã)− δci.

The firm strictly prefers continuing searching if and only if searching in the last period

strictly increases its expected payoff,

eδ(a) :=

∫ 1

a

[P (ã)− P (a)]dGδ(ã)− δci > 0.

eδ(a) strictly decreases in a and eδ(1) ≤ 0. Because eδ(0) can be either negative or

positive, we have to discuss several cases.

Case 1. If eδ(0) < 0, Firm i is strictly better off stopping searching in any state a ∈ [0, 1].

Thus, ātk−1 = atk−1 = −1.

Case 2. If eδ(0) = 0, Firm i is indifferent between stopping searching and continuing

searching with 0 as the cut-off, if it is in state 0; strictly prefers stopping searching, if

it is in any state above 0. Then ātk−1 = 0 and atk−1 = −1.

Case 3. If eδ(0) > 0 ≥ lima→0 e
δ(a), Firm i is strictly better off continuing searching in

state 0, but stopping searching once it is in a state above 0. Thus, ātk−1 = atk−1 = 0.

Case 4. If lima→0 e
δ(a) > 0, then Firm i’s is strictly better off stopping searching if it

22More generally, it is constant if and only if the opponent firm conducts search with a measure 0
over [0, T ].
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is in a state above âtk−1 and continuing searching if it is in a state below âtk−1 , where

the optimal cut-off âtk−1 > 0 is the unique value of a that satisfies,∫ 1

a

[P (ã)− P (a)]dGδ(ã)− δc = 0.

Thus, in this case ātk−1 = atk−1 = âtk−1 .

Hence, the continuation payoff at tk−1 ≥ 0 for Firm i in a state a ∈ [0, 1] is

ω(a) =

P (a) +
∫ 1

a
[P (ã)− P (a)]dGδ(ã)− δc for a < atk−1

P (a) for a ≥ atk−1 .

Then, we look at the time point tk−2. In the following, we argue that ātk−2 = ātk−1 .

The argument for atk−2 = atk−1 is very similar and thus is omitted.

First, we show that ātk−2 ≤ ātk−1 . Suppose ātk−2 > ātk−1 . Suppose Firm i is in

state ātk−2 at time tk−2. Suppose Firm i searches between tk−2 and tk−1. If it does not

discover any innovation with a value higher than ātk−2 , then at the end of this period it

stops searching and takes ātk−2 . However, ātk−2 > ātk−1 implies

0 =

∫ 1

ātk−2

[P (ã)− P (ātk−2)]dGδ(ã)− δci

<

∫ 1

ātk−1

[P (ã)− P (ātk−1)]dGδ(ã)− δc ≤ 0.

The search cost is not compensated by the increase in the probability of winning from

searching between tk−2 and tk−1, and thus the firm strictly prefers stopping searching

to continuing searching at time tk−2, which contradicts the assumption that ātk−2 is the

upper optimal cut-off. Hence, it must be the case that ātk−2 ≤ ātk−1 .

Next, we show that ātk−2 = ātk−1 .

In Case 1, it is straightforward that Firm i strictly prefers stopping searching at

tk−2, since it is for sure not going to search between tk−1 and tk. Hence, Firm i stops

searching before tk−1, and ātk−2 = ātk−1 = atk−2 = atk−1 = −1.

For ātk−1 ≥ 0, we prove by contradiction that ātk−2 < ātk−1 is not possible. Suppose

the inequality holds. If Firm i stops searching at tk−2, it would choose to continue

searching at tk−1, and its expected continuation payoff at tk−2 is ω(ātk−2). If the firm

continues searching, its expected continuation payoff is

ω(ātk−2) +

∫ 1

ātk−2

[ω(a)− ω(ātk−2)]dGδ(a)− δc. (6)
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In Cases 2 and 3, ātk−1 = 0 implies ātk−2 = −1. Then,∫ 1

ātk−2

[ω(a)− ω(ātk−2)]dGδ(a)− δci

=

∫ 1

−1

[P (a)]dGδ(a)− δci

=eδ(−1)

≥0

which means that Firm i in state 0 is weakly better off continuing searching between

tk−2 and tk−1, which implies that ātk−2 ≥ 0, resulting in a contradiction.

For Case 4, in which ātk−1 > 0, we have in (6)∫ 1

ātk−2

[ω(a)− ω(ātk−2)]dGδ(a)

=

∫ ātk−1

ātk−2

[(
P (a) +

∫ 1

a

[P (ã)− P (a)]dGδ(ã)

)
−
(
P (ātk−2) +

∫ 1

ātk−2

[P (ã)− P (ātk−2)]dGδ(ã)

)]
dGδ(a)

+

∫ 1

ātk−1

[
P (a)−

(
P (ātk−2) +

∫ 1

ātk−2

[P (ã)− P (ātk−2)]dGδ(ã)

)]
dGδ(a)

=

∫ 1

ātk−2

[
P (a)− P (ātk−2)

]
dGδ(a) +

∫ ātk−1

ātk−2

[∫ 1

a

[P (ã)− P (a)]dGδ(ã)

]
dGδ(a)

−
∫ 1

ātk−2

[∫ 1

ātk−2

[P (ã)− P (ātk−2)]dGδ(ã)

]
dGδ(a)

=Gδ(ātk−2)

∫ 1

ātk−2

[
P (a)− P (ātk−2)

]
dGδ(a) +

∫ ātk−1

ātk−2

[∫ 1

a

[P (ã)− P (a)]dGδ(ã)

]
dGδ(a)

>0.

Hence, at tk−2 Firm i would strictly prefer continuing searching, which again contradicts

the assumption that ātk−2 is the upper optimal cut-off. Consequently, ātk−2 = ātk−1 .

By backward induction from tk−1 to t0, we have āt0 = ātk−1 . Taking the limit we get

āt = lim
δ→0

āT−δ =: ā for all t ∈ [0, T ).

Similarly,

at = lim
δ→0

aT−δ =: a for all t ∈ [0, T ).

In addition, ā 6= a when and only when ā = 0 and a = −1.

As a consequence, Firm i’s best response is not to search, if ā = a = −1; to continue

searching if it is in a state below ā and to stop searching once the firm in a state above
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ā, if ā = a ≥ 0.

In brief, the above property is proved by backward induction. Take Case [ii] for

example. If at the last moment a firm is indifferent between continuing and stopping

searching when it is in a certain state, which means the increase in the probability of

winning from continuing searching equals the cost of searching, and therefore there is

no gain from searching. Immediately before the last moment the firm should also be

indifferent between continuing searching and not given the same state. This is because,

if the firm reaches a higher state from continuing searching, it weakly prefers not to

search at the last moment, and thus the increase in the probability of winning from

continuing searching at this moment equals the cost of searching as well. By induction,

the firm should be indifferent between continuing and stopping searching in the same

state from the very beginning.

In Case [iii], Firm i generally has uncountably many best response strategies. By

Assumption 1.1, we rule out most strategies and consider only two natural strategies:

not to search at all and to search with 0 as the cut-off.

Lemma A.2. Suppose a firm’s initial state is 0, and she searches with a cut-off â ≥ 0.

Then, the firm’s probability of ending up in a state below a ∈ [0, 1] at time T is

Z(a|â, T ) =


0 if a = 0

e−λT [1−F (a)] if 0 < a ≤ â

e−λT [1−F (â)] +
[
1− e−λT [1−F (â)]

] F (a)−F (â)
1−F (â)

if a > â.

1 − e−λT [1−F (â)] is the probability that the firm stops searching before time T, and
F (a)−F (â)

1−F (â)
is the conditional probability that the innovation above the threshold the firm

discovers is in between â and a.

Proof of Lemma A.2. For a = 0, it is clear that Z(a|â, T ) = 0.

For 0 < a ≤ â,

Z(a|â, T ) =
∞∑
l=0

e−λT (λT )l

l!
F l(a) = e−λT [1−F (a)].

For a > â, we approximate it by a discrete time model. Let {tl}kl=0, where 0 =

t0 < t1 < ... < tk = T , be a partition of the interval [0, T ], and let δl = tl − tl−1 for

l = 1, 2, ..., k. Define π as

‖ π ‖= max
1≤l≤k

|δl|.
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Then,

Z(a|â, T ) =Z(â|â, T ) + lim
‖π‖→0

k∑
l=1

Z(a|â, tl−1)

[
∞∑
n=1

e−λδl(λδl)
n

n!
[F n(a)− F n(â)]

]

=Z(â|â, T ) + lim
‖π‖→0

k∑
l=1

e−λtl−1[1−F (â)]λe−λδl
(
[F (a)− F (â)] +O(δl)

)
δl

=Z(â|â, T ) +

∫ T

0

λe−λt[1−F (â)][F (a)− F (â)]dt

=Z(â|â, T ) +
[
1− e−λT [1−F (â)]

] F (a)− F (â)

1− F (â)
,

where the second term on the right hand side of each equality is the firm’s probability

of ending up in a state between â and a. The term Z(â|â, tn) used here is a convenient

approximation when δl is small. The second equality is derived from the fact that

∞∑
n=2

(λδl)
n

n!
[F n(a)− F n(a∗)] <

λ2δ2
l

2(1− λδl)
= o(δl).

Lemma A.3. Given a > a′, Z(a|ã, T )− Z(a′|ã, T )

1. is constant in ã for ã ≥ a;

2. strictly decreases in ã for ã ∈ (a′, a);

3. strictly increases in ã for ã ≤ a′.

This single-peaked property says that the probability of ending up in a state between

a′ and a is maximized if a firm chooses strategy a′.

Proof of Lemma A.3. First, we show that 1−e−λTx
x

strictly decreases in x over (0, 1]

as follows. Define s := λT and take x1, x2, 0 < x1 < x2 ≤ 1, we have

1− e−sx1
x1

>
1− e−sx2

x2

,

implied by

∂(1− e−sx1)x2 − (1− e−sx2)x1

∂s
= x1x2(e−sx1 − e−sx2) ≥ 0 (= 0 iff s = 0) and

(1− e−sx1)x2 − (1− e−sx2)x1 = 0 for s = 0.
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Next, define x := 1− F (a), x′ := 1− F (a′), and x̃ := 1− F (ã). We have

Z(a|ã, T )− Z(a′|ã, T ) =


e−λTx − e−λTx′ for ã ≥ a

(1− e−λTx′)− (1− e−λT x̃)x
x̃

for ã ∈ (a′, a)

(1− e−λT x̃)x′−x
x̃

for ã ≤ a′.

It is independent of ã for ã ≥ a, strictly increasing in x̃ and thus strictly decreasing in

ã for ã ≤ a′, and strictly decreasing in x̃ and thus strictly increasing in ã for ã ≤ a′.

Lemma A.4. Suppose Firm j with initial state 0 plays a strategy âj. Then, the in-

stantaneous gain on payoff from searching for Firm i in a state a is

λ

∫ 1

ai

[Z(a|âj, T )− Z(ai|âj, T )]dF (a)− c.

Proof of Lemma A.4. For convenience, denote H(a) as Z(a|âj, T ) for short. The

instantaneous gain from searching for Firm i in a state ai is

lim
δ→0

(
e−λδH(ai) + λδe−λδ

[∫ 1

ai
H(a)dF (a) + F (ai)H(ai)

]
+ o(δ)− δc

)
−H(ai)

δ

= lim
δ→0

−(1− e−λδ)H(ai) + λδe−λδ
[∫ 1

ai
H(a)dF (a) + F (ai)H(ai)

]
+ o(δ)− δc

δ

= lim
δ→0

−λδe−λδH(ai) + λδe−λδ
[∫ 1

ai
H(a)dF (a) + F (ai)H(ai)

]
+ o(δ)− δc

δ

=− λH(ai) + λ

[∫ 1

ai

H(a)dF (a) + F (ai)H(ai)

]
− c

=λ

∫ 1

ai

[Z(a|âj, T )− Z(ai|âj, T )] dF (a)− c.

A.2 Proofs for the Benchmark Case

Proof of Theorem 2.1. We prove the theorem case by case.

Case[i]. When Firm i does not search, Firm j’s best response is to search with cut-off

0. For 1
2
λ(1 + e−λT ) ≤ c, when Firm j searches with any cut-off aj ≥ 0, Firm i’s best

response is not to search, since the instantaneous gain from searching for Firm i in state
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0 is

λ

∫ 1

0

Z(a|aj, T )dF (a)− c

≤λ
∫ 1

0

Z(a|0, T )dF (a)− c

=λ

∫ 1

0

[
e−λT + (1− e−λT )F (a)]dF (a)− c

=λ

[
e−λT +

1

2
(1− e−λT )

]
− c

=
1

2
λ(1 + e−λT )− c

≤0 (= 0 iff
1

2
λ(1 + e−λT ) = c),

where the first inequality follows from Lemma A.3. Hence, there are two pure strategy

equilibria, in each of which one firm does not search and the other firm searches with 0

as the cut-off, and if 1
2
λ(1 + e−λT ) = c there is also an equilibrium in which both firms

search with 0 as the cut-off.

Case [ii]. First, we show that any strategy with a cut-off value higher than zero is a

dominated strategy. When Firm j does not search, Firm i prefers searching with 0 as

the cut-off to any other strategy. Suppose Firm j searches with âj ≥ 0 as the cut-off.

The instantaneous gain from searching for Firm i in a state ai > 0 is

λ

∫ 1

ai

[Z(a|âj, T )− Z(ai|âj, T )]dF (a)− c

≤λ
∫ 1

ai

[Z(a|ai, T )− Z(ai|ai, T )]dF (a)− c

=
1

2
λ(1− e−λT )[1− F (ai)]

2 − c

<0,

where the first inequality follows from Lemma A.3. Hence, once Firm i is in a state

above 0, it has no incentive to continue searching any more. In this case, Firm i prefers

either not to conduct any search or to search with 0 as the cut-off to any strategy with

a cut-off value higher than zero.

Second, we show that the prescribed strategy profile is the unique equilibrium. It is

sufficient to show that searching with 0 as the cut-off is the best response to searching

with 0 as the cut-off. Suppose Firm j searches with 0 as the cut-off, the instantaneous
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gain from searching for Firm i in state a = 0 is

λ

∫ 1

0

Z(a|0, T )dF (a)− c

=
1

2
λ(1 + e−λT )− c

>0.

That is, Firm i is strictly better off continuing searching if it is in state 0, and strictly

better off stopping searching once it is in a state above 0. Hence, the prescribed strategy

profile is the unique equilibrium.

Case [iii]. First, we prove that among the strategy profiles in which each firm searches

with a cut-off higher than 0, the prescribed symmetric strategy profile is the unique equi-

librium. Suppose a pair of cut-off rules (a∗1, a
∗
2), in which a∗1, a

∗
2 > 0, is an equilibrium,

then Firm i in state a∗i is indifferent between continuing searching and not. That is, by

Lemma A.4, we have

λ

∫ 1

a∗i

[
Z(a|a∗j , T )− Z(a∗i |a∗j , T )

]
dF (a)− c = 0. (7)

Suppose a∗1 6= a∗2. W.l.o.g., we assume a∗1 < a∗2. Then,

c =λ

∫ 1

a∗1

[Z(a|a∗2, T )− Z(a∗1|a∗2, T )]dF (a)

>λ

∫ 1

a∗2

[Z(a|a∗2, T )− Z(a∗2|a∗2, T )]dF (a)

>λ

∫ 1

a∗2

[Z(a|a∗1, T )− Z(a∗2|a∗1, T )]dF (a) = c

resulting in a contradiction. Hence, it must be the case that a∗1 = a∗2.

Next, we show the existence of equilibrium by deriving the unique equilibrium cut-off

value a∗ := a∗1 = a∗2 explicitly. Applying Lemma A.2 to (7), we have

λ

∫ 1

a∗

[
1− e−λT [1−F (a∗)]

] F (a)− F (a∗)

1− F (a∗)
dF (a) = c

⇔1

2
[1− F (a∗)]

[
1− e−λT [1−F (a∗)]

]
=
c

λ
. (8)

The existence of a solution is ensured by the intermediate value theorem: when

F (a∗) = 1, the term on the left hand side of (8) equals to 0, smaller than c
λ
; when

F (a∗) = 0, it equals to 1−e−λT
2

, larger than or equals to c
λ
. The uniqueness of the

solution is insured by that the term on the left hand side of the above equality is
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strictly decreasing in a∗.

Second, we show that there is no equilibrium in which one firm searches with 0 as

the cut-off. Suppose Firm j searches with 0 as the cut-off. The instantaneous gain from

searching for Firm i in a state ai > 0 is

λ

∫ 1

ai

[Z(a|0, T )− Z(ai|0, T )]dF (a)− c

=λ

∫ 1

ai

(1− e−λT )[F (a)− F (ai)]dF (a)− c

=
1

2
λ(1− e−λT )[1− F (ai)]

2 − c, (9)

which is positive when ai = 0 and negative when ai = 1. By the intermediate value

theorem, there must be a value âi > 0 such that (9) equals 0 when ai = âi. Hence,

Firm i’s best response is to search with âi as the cut-off. However, if Firm i searches

with âi as the cut-off, it is not Firm j’s best response to search with 0 as the cut-off,

because

0 =

∫ 1

âj

[Z(a|0, T )− Z(âj|0, T )]dF (a)− c

<

∫ 1

âj

[Z(a|âj, T )− Z(âj|âj, T )]dF (a)− c

<

∫ 1

0

[Z(a|âj, T )− Z(0|âj, T )]dF (a)− c,

which means that Firm j strictly prefers continuing searching when it is in a state

slightly above 0.

Last, we show that there is no equilibrium in which one firm does not search. Suppose

Firm j does not search. Firm i’s best response is to search with 0 as the cut-off. However,

Firm j then strictly prefers searching when it is in state 0, since the instantaneous gain

from searching for the firm in state 0 is again

λ

∫ 1

0

Z(a|ai, T )dF (a)− c > 0.

Proof of Lemma 2.2. The expected total cost of a firm who searches with a cut-off
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a ≥ 0 is

c

[∫ T

0

∂(1− Z(a|a, t))
∂t

tdt+ TZ(a|a, T )

]
=(1− e−λT [1−F (a)])

c

λ[1− F (a)]
, (10)

which strictly increases in a. In Regions 2 and 3, in equilibrium, the probability of

winning for each firm is

1

2
[1− Z2(0|a∗(c, T ), T )]

=
1

2
(1− e−2λT ), (11)

and thus the expected payoff to each firm is the difference between the expected prob-

ability of winning (11) and the expected search cost (10), setting a to be a∗(a, T ):

1

2
(1− e−2λT )− (1− e−λT [1−F (a∗(c,T ))])

c

λ[1− F (a∗(c, T ))]
. (12)

The limit of (12) as T approaches infinity is 0.

A.3 Proofs for the Head Start Case

First, we state two crucial lemmas for the whole section.

Lemma A.5.

1. For aI1 > a∗(c, T ), not to search is Firm 1’s strictly dominant strategy.

2. For aI1 = a∗(c, T ), not to search is Firm 1’s weakly dominant strategy. If Firm

2 searches with cut-off aI1, Firm 1 is indifferent between not to search and search

with aI1 as the cut-off; Otherwise, Firm 1 strictly prefers not to search.

Proof of Lemma A.5. Suppose Firm 2 does not search, Firm 1’s best response is

not to search. Suppose Firm 2 searches with cut-off a2 ≥ aI1. If Firm 1 searches with

cut-off a1 ≥ aI1, following from Lemma A.3, the instantaneous gain from searching for

Firm 1 in any state a1 ≥ aI1 ≥ a∗(c, T ) is

λ

∫ 1

a1

[Z(a|a2, T )− Z(a1|a2, T )]dF (a)− c

≤λ
∫ 1

a∗(c,T )

[Z(a|a∗(c, T ), T )− Z(a∗(c, T )|a∗(c, T ), T )]dF (a)− c, (13)
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where equality holds if and only if a1 = a2 = a∗(c, T ). The right hand side of inequality

(13) is less than or equal to 0 (it equals to 0 iff c ≥ 1
2
λ[1 − e−λT ]). Hence, the desired

results follow.

Lemma A.6.

1. For aI1 > F−1(1− c
λ
), not to search is Firm 2’s strictly dominant strategy.

2. For aI1 = F−1(1− c
λ
), not to search is Firm 2’s weakly dominant strategy. If Firm

1 does not search, Firm 2 is indifferent between not to search and search with any

â2 ∈ [aI2, a
I
1] as the cut-off. If Firm 1 searches, Firm 2’s strictly prefers not to

search.

Proof of Lemma A.6. If Firm 1 does not search, the instantaneous gain from search-

ing for Firm 2 in a state a2 ≤ aI1 is

lim
δ→0

λδe−λδ[1− F (aI1)] + o(δ)− cδ
δ

= λ[1− F (aI1)]− c

< 0 in Case [1]

= 0 in Case [2].

If Firm 1 searches, Firm 2’s instantaneous gain is even lower. Hence, the desired results

follow.

Proof of Theorem 3.1. [1],[2], and [3] directly follow from Lemmas A.5 and A.6. We

only need to prove [4] and [5] in the following.

[4]. Following Lemma A.5, if Firm 2 searches with cut-off aI1, Firm 1 has two best

responses: not to search and search with cut-off aI1. If Firm 1 searches with cut-off aI1,

the instantaneous gain from searching for Firm 2 is

λ

∫ 1

aI1

Z(a|aI1, T )dF (a)− c

=λ

∫ 1

aI1

[
e−λT [1−F (aI1)] + (1− e−λT [1−F (aI1)])

F (a)− F (aI1)

1− F (aI1)

]
dF (a)− c

=
1

2
λ(1 + e−λT [1−F (aI1)])[1− F (aI1)]− c

>λ[1− F (aI1)]− c

>0

if it is in a state a2 < aI1 = a∗(c, T ); it is

λ

∫ 1

a2

[Z(a|aI1, T )− Z(a2|aI1, T )]dF (a)− c < 0
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if it is in a state a2 > aI1 = a∗(c, T ). Hence, the two prescribed strategy profiles are

equilibria.

[5]. First, there is no equilibrium in which either firm does not search. If Firm 2 does

not search, Firm 1’s best response is not to search. However, if Firm 1 does not search,

Firm 2’s best response is to search with cut-off aI1 rather than not to search. If Firm 2

searches with cut-off aI1, then not to search is not Firm 1’s best response, because the

instantaneous gain from searching for Firm 1 in state aI1 is

λ

∫ 1

aI1

[Z(a|aI1, T )− Z(aI1|aI1, T )]dF (a)− c

=
1

2
λ(1− e−λT [1−F (aI1)])[1− F (aI1)]− c

>0,

where inequality holds because aI1 < a∗(c, T ).

Next, we argue that there is no equilibrium in which either firm searches with cut-off

aI1. Suppose Firm i searches with cut-off aI1. Firm j’s best response is to search with

a cut-off âj ∈ [aI1, a
∗(c, T )). This is because the instantaneous gain from searching for

Firm j in a state a′ ≥ aI1 is

λ

∫ 1

a′
p2[Z(a|aI1, T )− Z(a′|aI1, T )]dF (a)− c. (14)

(14) is larger than 0 when a′ = aI1. It is less than 0 if a′ = a∗(c, T ), because by

Lemma A.3 we have

λ

∫ 1

a∗
p2[Z(a|aI1, T )− Z(a∗|aI1, T )]dF (a)− c

<λ

∫ 1

a∗(c,T )

[Z(a|a∗(c, T ), T )− Z(a∗|a∗(c, T ), T )]dF (a)− c

=0.

Then, the intermediate value theorem and the strict monotonicity yield the unique

cut-off value of âj ∈ (aI1, a
∗(c, T )).

However, if Firm j searches with cut-off âj ∈ [aI1, a
∗(c, T )), Firm i’s best response is

to search with a cut-off value âi ∈ (âj, a
∗(c, T )) rather than aI1, because the instantaneous

gain from searching for Firm i in a state ã is

λ

∫ 1

ã

[Z(a|â1, T )− Z(ã|â1, T )]dF (a)− c

< 0 for ã = a∗(c, T )

> 0 for ã = â1
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and it is monotone w.r.t. ã. This results in contradiction. Hence, there is no equilibrium

in which either firm searches with aI1 as the cut-off.

Last, we only need to consider the case in which each firm searches with a cut-off

higher than aI1. Following the same argument as in the proof of Theorem 2.1, we have

(a∗(c, T ), a∗(c, T )) being the unique equilibrium.

Proof of Proposition 4.1. We apply Theorem 3.1 here for the analysis. We only

need to show the case for aI1 ∈ (a∗(c, T ), F−1(1 − c
λ
)). In this case, Firm 1 does not to

search and Firm 2 searches with aI1 as the cut-off. Now, take the limit aI1 → a∗(c, T )

from the right hand side of a∗(c, T ). In the limit, where Firm 2 searches with a∗(c, T )

as the cut-off, Firm 1 weakly prefers not to search. If aI1 = a∗(c, T ), Firm 1 is actually

indifferent between searching and not. Hence, a head start in the limit makes Firm 1

weakly better off. Firm 1’s payoff when it does not search is e−λT [1−F (aI1)], the probability

of Firm 2 ending up in a state below aI1, is strictly increasing in aI1. Hence, a higher

value of the head start makes Firm 1 even better off.

Proof of Proposition 4.2. [1]. For T being small, a∗(c, T ) = 0. DM(0, aI1) = 0, and

the partial derivative of DM(T, aI1) w.r.t. T when T is small is

∂DM(T, aI1)

∂T
= λ(1− aI1)e−λT (1−aI1)[1− c

λ(1− aI1)
]− λe−2λT + ce−λT ,

which equals to −λaI1 < 0 at the limit of T = 0.

[2]. Follows from Propositions 3.1 and 4.1.

Proof of Proposition 4.3. DM(T, aI1) is strictly decreasing in aI1, and it goes to the

opposite of (12), which is less than 0, as aI1 goes to F−1(1− c
λ
), and

(1− e−λT [1−F (a∗(c,T ))])− 1

2
(1− e−2λT ) (15)

as aI1 goes to a∗(c, T ). Hence, if (15) is positive, Case 1 yields from the intermediate

value theorem; Case 2 holds if (15) is negative.

A.4 Proofs for the Extended Models

Proof of Proposition 5.1. We argue that, to determine a subgame perfect equilib-

rium, we only need to consider two kinds of strategies profiles:

a Firm 1 retains its initial innovation and does not search, and Firm 2 searches with

aI1 as the cut-off;
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b Firm 1 discards its initial innovation and searches with aI2 as the cut-off, and Firm

2 retains its initial innovation.

First, suppose c < λ
2
(1 + e−λT ). If Firm 1 retains the initial innovation, it will have

no incentive to search, and Firm 2 is indifferent between discarding the initial innovation

and not. In either case, Firm 2 searches with aI1 as the cut-off. Given that Firm 1 has

discarded its initial innovation, Firm 2 has no incentive to discard its initial innovation

as shown in Proposition 4.1.

Second, suppose c > λ
2
(1 + e−λT ). In the subgame in which both firms discard their

initial innovation, there are two equilibria, in each of which one firm searches with 0 as

the cut-off and the other firm does not search. Hence, to determine a subgame perfect

equilibrium, we have to consider another two strategy profiles, in addition to [a] and

[b]:

c Firm 1 discards its initial innovation and searches with 0 as the cut-off, and Firm

2 discards its initial innovation and does not search.

d Firm 1 discards its initial innovation and does not search, and Firm 2 discards its

initial innovation and searches with 0 as the cut-off.

However, we can easily rule out [c] and [d] from the candidates for equilibria. In

[c], Firm 2 obtains a payoff of 0. It can deviate by retaining its initial innovation so as

to obtain a positive payoff. Similarly, in [d], Firm 1 can deviate by retaining its initial

innovation to obtain a positive payoff rather than 0.

Last, it remains to compare Firm 1’s payoff in [a] and [b]. In [a], Firm 1’s payoff is

e−λT [1−F (aI1)]. (16)

In [b], it is

(1− e−λT [1−F (aI2)])(1− c

λ[1− F (aI2)]
). (17)

The difference between these two payoffs, (17) and (16), is increasing in T , and it

equals −1 when T = 0 and goes to 1 − c
λ[1−F (aI2)]

> 0 as T approaches infinity. Hence,

the desired result is implied by the intermediate value theorem.

Proof of Proposition 5.2. The backward induction is similar to the proof of Propo-

sition 5.1, and thus is omitted.

Proof of Proposition 5.3. The equilibrium for the subgame starting from time t0 de-

rives from Theorem 3.1. Suppose at time t0, Firm i is in a state a0
i , where max{a0

1, a
0
2} ≥

aI1. Assume a0
i > a0

j . If a0
i > F−1(1− c

λ
), then Firm i obtains a continuation payoff of 1,
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and Firm j obtains 0. If a0
i ∈ (a∗(c, T − t0), F−1(1− c

λ
)), then Firm i obtains a continua-

tion payoff of e−λ(T−t0)[1−F (a0i )], and Firm j obtains (1−e−λ(T−t0)[1−F (a0i )])(1− c
λ[1−F−1(a0i )]

).

To prove this result, we first show that not to search before t0 is Firm 2’s best

response regardless of Firm 1’s action before time t0. It is equivalent to showing that

not to search before t0 is Firm 2’s best response if Firm 2 knows that Firm 1 is definitely

going to be in any state a0
1 ≥ a∗L at time t0.

As we have shown before, for any a0
1 ≥ (>)F−1(1− c

λ
), Firm 2 (strictly) prefers not

to conduct searching before time t0.

If a0
1 ∈ [a∗L, F

−1(1− c
λ
)), Firm 2’s unique best response before time t0 is not to search.

The instantaneous gain from searching at any time point before t0 for Firm 2 in a state

below a0
1 is

λ
[
[1− F (F−1(1− c

λ
))] +

∫ F−1(1− c
λ

)

a01

e−λ(T−t0)[1−F (a)]dF (a)

− [1− F (a0
1)](1− e−λ(T−t0)[1−F (a0i )])(1− c

λ[1− F−1(a0
i )]

)
]
− c

=λ
[ ∫ F−1(1− c

λ
)

a01

e−λ(T−t0)[1−F (a)]dF (a)

− [1− F (a0
1)](1− e−λ(T−t0)[1−F (a0i )])(1− c

λ[1− F−1(a0
i )]

)
]
,

which is strictly negative when T − t0 is sufficiently large, and thus conducting a search

before time t0 actually makes Firm 2 strictly worse off in this case.

Next, we show that Firm 1’s best response before time t0 is to search with F−1(1− c
λ
)

as the cut-off, if Firm 2 does not search before t0. To see this, look at the instantaneous

gain from searching for Firm 1 in a state below F−1(1− c
λ
):

λ
[
[1− F (F−1(1− c

λ
))]

+

∫ F−1(1− c
λ

)

aI1

e−λ(T−t0)[1−F (a)]dF (a)− [1− F (aI1)]e−λ(T−t0)[1−F (aI1)]
]
− c

=

∫ F−1(1− c
λ

)

aI1

e−λ(T−t0)[1−F (a)]dF (a)− [1− F (aI1)]e−λ(T−t0)[1−F (aI1)]

>

∫ F−1(1− c
λ

)

ã

e−λ(T−t0)[1−F (a)]dF (a)− [1− F (ã)]e−λ(T−t0)[1−F (aI1)]

>(1− c

λ
− F (ã))e−λ(T−t0)[1−F (ã)] − [1− F (ã)]e−λ(T−t0)[1−F (aI1)]

=e−λ(T−t0)[1−F (aI1)][1− c

λ
− F (ã)]

(
eλ(T−t0)[F (ã)−F (aI1)] − 1− F (ã)

1− c
λ
− F (ã)

)
,

where ã is any value in (aI1, F
−1(1 − c

λ
)). The term on the right hand side of the last

equality is strictly positive if T − t0 is sufficiently large. Hence, the desired result yields.
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A.5 Proofs for the Case with Asymmetric Costs

Proposition A.1. If 0 < c1 < c2 <
1
2
λ(1−e−λT ) there exists a pure strategy equilibrium

(a∗1, a∗2) with a∗1, a
∗
2 ≥ 0.

Proof of Proposition A.1. We prove the existence of equilibrium by applying Brouwer’s

fixed point theorem. First, same as in the previous proofs, if Firm j searches with a

cut-off âj ≥ 0, the instantaneous gain from searching for Firm i in state 0 is

λ

∫ 1

0

Z(a|1, T )− ci > 0,

and thus Firm i is better off continuing searching if it is in state 0.

Next, let us define for each Firm j a critical value

αj = sup{aj ∈ [0, 1] | I(0|αj, ci) = λ

∫ 1

0

[Z(a|αj)− Z(0|αj)]dF (a)− ci > 0}.

Suppose there is a αj ∈ (0, 1) such that

I(0|αj, ci) = λ

∫ 1

0

[Z(a|αj)− Z(0|αj)]dF (a)− ci = 0.

For any âj ∈ [0, αj],

I(0|âj, ci) ≥ 0 and

I(1|âj, ci) < 0.

By the intermediate value theorem and the strict monotonicity of Q(a|âj, ci) in a, there

must exist a unique ãi ∈ [0, 1) such that

I(ãi|âj, ci) = 0.

That is, if Firm j searches with cut-off âj, Firm i’s best response is to search with cut-off

ãi.

For any âj ∈ (αj, 1], if the set is not empty,

I(0|âj, ci) < 0.

That is, Firm i’s best response is to search with cut-off 0.
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Then, we could define two best response functions BRi : [0, 1]→ [0, 1] where

BRi(âj) :=

0 for âj ∈ (αj, 1] if it is not empty

ãi where I(ãi|âj, ci) = 0 for âj ∈ [0, αj].

It is also easy to verify that BRi is a continuous function over [0, 1]. Hence, we have a

continuous self map BR : [0, 1]2 → [0, 1]2 where

BR = (BR1, BR2)

on a compact set, and by Brouwer’s fixed point theorem, there must exist of a pure

strategy equilibrium in which each Firm searches with a cut-off higher than or equal to

0.

Proof of Proposition 6.1. First, using the same arguments as in the proof of Propo-

sition 2.1, we claim that if there exists an equilibrium it must be the case that each firm

searches with a cut-off higher than or equal to 0 with one strictly positive value for one

firm.

Next, we show that there can be no equilibrium in which Firm 2 searches with a

cut-off â2 > 0 and Firm 1 searches with cut-off 0. Such a strategy profile (0, â2) is an

equilibrium if and only if

λ

∫ 1

0

[Z(a|â2, T )− Z(0|â2, T )]dF (a)− c1 ≤ 0, and

λ

∫ 1

â2

[Z(a|0, T )− Z(â2|0, T )]dF (a)− c2 = 0.

However,

0 = λ

∫ 1

â2

[Z(a|0, T )− Z(â2|0, T )]dF (a)− c2

< λ

∫ 1

â2

[Z(a|â2, T )− Z(â2|â2, T )]dF (a)− c2

< λ

∫ 1

0

[Z(a|â2, T )− Z(0|â2, T )]dF (a)− c1 ≤ 0,

resulting in a contradiction.

Next, we derive the necessary and sufficient conditions for the existence of an equi-

lirbium in which Firm 2 searches with a cut-off 0 and Firm 1 searches with a cut-off

strictly higher than 0. A pair of cut-off rules (â1, 0), â1 > 0, is an equilibrium if and
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only if

λ

∫ 1

â1

[Z(a|0, T )− Z(â1|0, T )]dF (a)− c1 = 0 and (18)

λ

∫ 1

0

[Z(a|â1, T )− Z(0|â1, T )]dF (a)− c2 ≤ 0, (19)

where

(18)⇔1

2
λ(1− e−λT )[1− F (â1)]2 − c = 0⇔ âj = F−1

(
1−

√
2c1

λ(1− e−λT )

)
. (20)

Then, (20) and (19) together imply that (âi, 0) is an equilibrium if and only if

I

(
0|F−1

(
1−

√
2c1

λ(1− e−λT )

)
, c2

)
≤ 0. (21)

We will see that if (21) holds there is no other equilibrium.

When (21) does not hold, there is a unique equilibrium, in which each firm searches

with a cut-off strictly higher than 0. Because by Proposition A.1 an equilibrium must

exists. Let (a∗1, a
∗
2) be such an equilibrium. We first show that a∗1 > a∗2 must hold by

proof by contradiction, and then we show that it must be a unique equilibrium. Such a

pair (a∗1, a
∗
2) is an equilibrium if and only if

λ

∫ 1

a∗i

[Z(a|a∗j , T )− Z(a∗i |a∗j , T )]dF (a) = ci for i = 1, 2 and j 6= i. (22)

Suppose a∗1 ≤ a∗2. Applying Lemma A.3, we have

c1 =λ

∫ 1

a∗1

[Z(a|a∗2, T )− Z(a∗1|a∗2, T )]dF (a)

≥λ
∫ 1

a∗2

[Z(a|a∗2, T )− Z(a∗2|a∗2, T )]dF (a)

≥λ
∫ 1

a∗2

[Z(a|a∗1, T )− Z(a∗2|a∗1, T )]dF (a) = c2,

resulting in a contradiction.

Then, we show the uniqueness of the equilibrium for Cases [1]− [3] by contradiction.

For Case [1] we show that the solution to (22) is unique, and for Cases [2] and [3] we

show that there can be no equilibrium in which each firm searches with a cut-off higher

than 0 coexisting with equilibrium
(
F−1

(
1−

√
2c1

λ(1−e−λT )

)
, 0
)

. We can prove all of

them together. Suppose there are two equilibria (a∗1, a
∗
2) and (ã∗1, ã

∗
2), where (a∗1, a

∗
2) is a
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solution to (22) and (ã∗1, ã
∗
2) is either

(
F−1

(
1−

√
2c1

λ(1−e−λT )

)
, 0
)

or a solution to (22).

It is sufficient to show that the following two cases are not possible:

1. ã∗1 > a∗1 > a∗2 > ã∗2 ≥ 0 and

2. a∗1 > ã∗1 > a∗2 > ã∗2 ≥ 0.

Suppose ã∗1 > a∗1 > a∗2 > ã∗2 ≥ 0. Applying Lemma A.3 we have

0 =λ

∫ 1

a∗1

[Z(a|a∗2, T )− Z(a∗1|a∗2, T )]dF (a)− c1

<λ

∫ 1

ã∗1

[Z(a|a∗2, T )− Z(ã∗1|a∗2, T )]dF (a)− c1

<λ

∫ 1

ã∗1

[Z(a|ã∗2, T )− Z(ã∗1|ã∗2, T )]dF (a)− c1 = 0,

resulting in a contradiction.

Suppose a∗1 > ã∗1 > a∗2 > ã∗2 ≥ 0. Applying Lemma A.3 again, we have

0 ≥λ
∫ 1

ã∗2

[Z(a|ã∗1, T )− Z(ã∗2|ã∗1, T )]dF (a)− c2

>λ

∫ 1

a∗2

[Z(a|ã∗1, T )− Z(a∗2|ã∗1, T )]dF (a)− c2

>λ

∫ 1

a∗2

[Z(a|a∗1, T )− Z(a∗2|a∗1, T )]dF (a)− c2 = 0,

resulting in another contradiction.

Proof of Proposition 6.2. For fixed c2 we have

∂a∗2
∂a∗1

= −

∂
∫ 1
a∗2

[Z(a|a∗1,T )−Z(a∗2|a∗1,T )]dF (a)

∂a∗1

∂
∫ 1
a∗2

[Z(a|a∗1,T )−Z(a∗2|a∗1,T )]dF (a)

∂a∗2

=

∫ 1

a∗2

∂[Z(a|a∗1,T )−Z(a∗2|a∗1,T )]

∂a∗1
dF (a)

∂Z(a∗2|a∗1,T )

∂a∗2

< 0.

Then,

∂a∗1
∂c1

= − −1

λ
∫ 1

a∗1

[
∂[Z(a|a∗2,T )−Z(a∗1|a∗2,T )]

∂a∗2

∂a∗2
∂a∗1
− ∂Z(a∗1|a∗2,T )

a∗1

]
dF (a)

< 0 and

∂a∗2
∂c1

=
∂a∗2
∂a∗1

∂a∗1
∂c1

> 0.
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For fixed c1 we have

∂a∗1
∂a∗2

= −

∂
∫ 1
a∗1

[Z(a|a∗2,T )−Z(a∗1|a∗2,T )]dF (a)

∂a∗2

∂
∫ 1
a∗1

[Z(a|a∗2,T )−Z(a∗1|a∗2,T )]dF (a)

∂a∗1

=

∫ 1

a∗1

∂[Z(a|a∗2,T )−Z(a∗1|a∗2,T )]

∂a∗2
dF (a)

∂Z(a∗1|a∗2,T )

∂a∗1

> 0.

Then,

∂a∗2
∂c2

= − −1

λ
∫ 1

a∗2

[
∂[Z(a|a∗1,T )−Z(a∗2|a∗1,T )]

∂a∗1

∂a∗1
∂a∗2
− ∂Z(a∗2|a∗1,T )

a∗2

]
dF (a)

< 0 and

∂a∗1
∂c1

=
∂a∗1
∂a∗2

∂a∗2
∂c2

< 0.
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